1
|
Said AEAA, Abd El-Wahab MMM, Farghal AF, Goda MN. Potential application of zirconium molybdate as a novel catalyst for the selective dehydrogenation of methanol to anhydrous formaldehyde. Sci Rep 2025; 15:15384. [PMID: 40316600 PMCID: PMC12048585 DOI: 10.1038/s41598-025-96328-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025] Open
Abstract
The non-oxidative dehydrogenation of methanol is considered a promising method for producing formaldehyde (FA), where the resulting anhydrous formaldehyde is perfect for the use in the subsequent generation of oxygenated synthetic fuels. In the current investigation, a series of Zr(MoO4)2 nanoaggregates, as a novel solid acid catalyst, were hydrothermally fabricated at different temperatures in the presence of triethylamine (TEA) as a surfactant. The original and calcined catalysts were characterized by TGA, DSC, XRD, FT-IR, XPS, HR-TEM, acidity and nitrogen sorption. Analyses revealed that the addition of TEA to the preparation procedures significantly enhanced the textural, acidic, and the catalytic performance of these catalysts. Acidity measurements reflected that the surface of these catalysts possessed Brønsted type of acidic sites of weak and intermediate strength. Catalytic activity results demonstrated that, Zr(MoO4)2 catalyst with Zr: TEA molar ratio of 1:1 (Z1T1) annealed at 400°C exhibited the maximum methanol conversion of 99% and 95% selectivity to formaldehyde at reaction temperature of 325°C. The remarkable catalytic performance was well correlated to the variation in acidity of the catalyst. This catalyst offered a long-term stability towards the production of formaldehyde for a period of time of 160 h with the same activity and selectivity. Also, this catalyst could be re-used for five time giving almost the same performance. The reason for this extreme catalytic activity and selectivity towards formaldehyde synthesis is the presence of weak and moderate strengthened Brønsted acid sites. In light of this, this work has produced an active, stable, and selective catalyst for the conversion of methanol to formaldehyde that is competitive with the most effective conventional and recently discovered catalysts.
Collapse
Affiliation(s)
| | | | - Aya Farouk Farghal
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Mohamed Nady Goda
- Department of Chemistry, Faculty of Science, Assiut University, Assiut, 71516, Egypt
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| |
Collapse
|
2
|
Ghaedamini H, Kim DS. A non-enzymatic hydrogen peroxide biosensor based on cerium metal-organic frameworks, hemin, and graphene oxide composite. Bioelectrochemistry 2025; 161:108823. [PMID: 39332214 DOI: 10.1016/j.bioelechem.2024.108823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 09/29/2024]
Abstract
This study presents the development of a novel non-enzymatic electrochemical biosensor for the real-time detection of hydrogen peroxide (H2O2) based on a composite of cerium metal-organic frameworks (Ce-MOFs), hemin, and graphene oxide (GO). The Ce-MOFs served as an efficient matrix for hemin encapsulation, while GO enhanced the conductivity of the composite. Characterization techniques including scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, UV-vis spectroscopy, and thermogravimetric analysis (TGA) confirmed the successful integration of hemin into the Ce-MOFs. The Ce-MOFs@hemin/GO-modified sensor demonstrated sensitive H2O2 detection due to the exceptional electrocatalytic activity of Ce-MOFs@hemin and the high conductivity of GO. This biosensor exhibited a linear response to H2O2 concentrations from 0.05 to 10 mM with a limit of detection (LOD) of 9.3 μM. The capability of the biosensor to detect H2O2 released from human prostate carcinoma cells was demonstrated, highlighting its potential for real-time monitoring of cellular oxidative stress in complex biological environments. To further assess its practical applicability, the sensor was tested in human serum samples, yielding promising results with recovery values ranging from 94.50 % to 103.29 %. In addition, the sensor showed excellent selectivity against common interfering compounds due to the outstanding peroxidase-like activity of the composite.
Collapse
Affiliation(s)
| | - Dong-Shik Kim
- Department of Chemical Engineering, University of Toledo, Toledo, OH 43606, USA.
| |
Collapse
|
3
|
Khandagale DD, Wang SF. Fabrication of Strontium Molybdate with Functionalized Carbon Nanotubes for Electrochemical Determination of Antipyretic Drug-Acetaminophen. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2887. [PMID: 38930256 PMCID: PMC11204459 DOI: 10.3390/ma17122887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
In recent years, there has been a significant interest in the advancement of electrochemical sensing platforms to detect antipyretic drugs with high sensitivity and selectivity. The electrochemical determination of acetaminophen (PCT) was studied with strontium molybdate with a functionalized carbon nanotube (SrMoO4@f-CNF) nanocomposite. The SrMoO4@f-CNF nanocomposite was produced by a facial hydrothermal followed by sonochemical treatment, resulting in a significant enhancement in the PCT determination. The sonochemical process was applied to incorporate SrMoO4 nanoparticles over f-CNF, enabling a network-like structure. Moreover, the produced SrMoO4@f-CNF composite structural, morphological, and spectroscopic properties were confirmed with XRD, TEM, and XPS characterizations. The synergistic effect between SrMoO4 and f-CNF contributes to the lowering of the charge transfer resistance (Rct=85 Ω·cm2), a redox potential of Epc=0.15 V and Epa=0.30 V (vs. Ag/AgCl), and a significant limit of detection (1.2 nM) with a wide response range of 0.01-28.48 µM towards the PCT determination. The proposed SrMoO4@f-CNF sensor was studied with differential pulse voltammetry (DPV) and cyclic voltammetry (CV) techniques and demonstrated remarkable electrochemical properties with a good recovery range in real-sample analysis.
Collapse
Affiliation(s)
| | - Sea-Fue Wang
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei 106, Taiwan;
| |
Collapse
|
4
|
Sasikumar R, Kim B. 3D walnut-like rare-earth gadolinium molybdate encapsulated with thermo-responsive hydrogel for sensitive electrochemical detection of anticancer drug Niftolide in human urine. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Zirconium Molybdate Nanocomposites’ Sensing Platform for the Sensitive and Selective Electrochemical Detection of Adefovir. Molecules 2022; 27:molecules27186022. [PMID: 36144756 PMCID: PMC9503393 DOI: 10.3390/molecules27186022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
Adefovir (ADV) is an anti-retroviral drug, which can be used to treat acquired immune deficiency syndrome (AIDS) and chronic hepatitis B (CHB), so its quantitative analysis is of great significance. In this work, zirconium molybdate (ZrMo2O8) was synthesized by a wet chemical method, and a composite with multi-walled carbon nanotubes (MWCNTs) was made. ZrMo2O8-MWCNTs composite was dropped onto the surface of a glassy carbon electrode (GCE) to prepare ZrMo2O8-MWCNTs/GCE, and ZrMo2O8-MWCNTs/GCE was used in the electrochemical detection of ADV for the first time. The preparation method is fast and simple. The materials were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS) and cyclic voltammetry (CV). It was electrochemically analysed by differential pulse voltammetry (DPV). Compared with single-material modified electrodes, ZrMo2O8-MWCNTs/GCE showed a vastly improved electrochemical response to ADV. Moreover, the sensor complements the study of the electrochemical detection of ADV. Under optimal conditions, the proposed electrochemical method showed a wide linear range (from 1 to 100 μM) and a low detection limit (0.253 μM). It was successfully tested in serum and urine. In addition, the sensor has the advantages of a simple preparation, fast response, good reproducibility and repeatability. It may be helpful in the potential applications of other substances with similar structures.
Collapse
|
6
|
Yin H, Zhang C, Bai X, Yang Z, Liu Z. Tuning Electrochemical Properties of Silver Nanomaterials by Doping with Boron: Application for Highly Non‐enzymatic Sensing of Hydrogen Peroxide. ChemistrySelect 2022. [DOI: 10.1002/slct.202201310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hang Yin
- School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 PR China
| | - Chongchao Zhang
- School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 PR China
| | - Xiao Bai
- School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 PR China
| | - Ziyin Yang
- School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 PR China
| | - Zhe Liu
- School of Chemistry and Chemical Engineering Qufu Normal University Ji Ning Shi, Qufu 273165 PR China
| |
Collapse
|
7
|
Venkatesh K, Rajakumaran R, Chen SM, Karuppiah C, Yang CC, Ramaraj SK, Ali MA, Al-Hemaid FMA, El-Shikh MS, Almunqedhi BMA. A novel hybrid construction of MnMoO 4 nanorods anchored graphene nanosheets; an efficient electrocatalyst for the picomolar detection of ecological pollutant ornidazole in water and urine samples. CHEMOSPHERE 2021; 273:129665. [PMID: 33508687 DOI: 10.1016/j.chemosphere.2021.129665] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 01/10/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
Nitroimidazole compounds are widely used antibiotics to encounter anaerobic bacterial and parasitic infections. The wide usage of antibiotic drugs became an ecological contaminant which in turn into potential monitoring. In this regards, we have designed and developed a new electrochemical sensing probe to monitor an antiprotozoal drug, ornidazole (ODZ), with the aid of a glassy carbon electrode (GCE) integrated with manganese molybdate nanorods (MnMoO4) decorated graphene nanosheets (GNS) hybrid materials that prepared by feasible probe sonochemical method (parameters: 2-4 W, 5 mV amp, 20 kHz). The electrochemical investigations of the developed probe were performed by using rapid scan electrochemical workstations namely cyclic voltammetry (CV) and amperometric (i-t) techniques. The as-prepared MnMoO4/GNS nanocomposite was characterized and its purity of nanocomposite formation was confirmed by various analytical techniques like X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), and Raman spectroscopy. In addition to that, the textural morphology of the MnMoO4/GNS nanocomposite was examined with the aid of field emission scanning electron microscopy (FE-SEM) and high-resolution transmission electron microscopy (HR-TEM). The MnMoO4/GNS nanocomposite rotating disk glassy carbon electrode (RDGCE) plays a crucial role in electrochemical detection of ODZ, which results in excellent anti-interference ability, a lower detection limit of 845 pM, massive linear ranges from 10 to 770 nM, and good sensitivity of about 104.62 μA μM-1 cm-2. From the acquired electrochemical studies, we have developed a disposable electrochemical sensor probe using a low-cost screen-printed carbon electrode (SPCE) with MnMoO4/GNS nanocomposite. The MnMoO4/GNS/SPCE are capably employed in real-time sensing of ODZ in water and urine samples. These electrochemical studies revealed the integral new vision on the electrocatalytic performance of the modified SPCE and also shown excellent amplification results in ultra-trace levels.
Collapse
Affiliation(s)
- Krishnan Venkatesh
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India
| | - Ramachandran Rajakumaran
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan, ROC.
| | - Chelladurai Karuppiah
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC
| | - Chun-Chen Yang
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, 24301, Taiwan, ROC
| | - Sayee Kannan Ramaraj
- PG and Research Department of Chemistry, Thiagarajar College, Madurai, Tamil Nadu, India.
| | - Mohammad Ajmal Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Fahad M A Al-Hemaid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Mohammad Suliman El-Shikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - B M A Almunqedhi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
8
|
Arumugam B, Muthukutty B, Chen SM, Kannan Ramaraj S, Vinoth Kumar J, Nagarajan ER. Ultrasonication-aided synthesis of nanoplates-like iron molybdate: Fabricated over glassy carbon electrode as an modified electrode for the selective determination of first generation antihistamine drug promethazine hydrochloride. ULTRASONICS SONOCHEMISTRY 2020; 66:104977. [PMID: 32315841 DOI: 10.1016/j.ultsonch.2020.104977] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/28/2019] [Accepted: 01/16/2020] [Indexed: 05/21/2023]
Abstract
The innovation of novel and proficient nanostructured materials for the precise level determination of pharmaceuticals in biological fluids is quite crucial to the researchers. With this in mind, we synthesized iron molybdate nanoplates (Fe2(MoO4)3; FeMo NPs) via simple ultrasonic-assisted technique (70 kHz with a power of 100 W). The FeMo NPs were used as the efficient electrocatalyst for electrochemical oxidation of first-generation antihistamine drug- Promethazine hydrochloride (PMH). The as-synthesized FeMo NPs were characterized and confirmed by various characterization techniques such as XRD, Raman, FT-IR, FE-SEM, EDX and Elemental mapping analysis and electron impedance spectroscopy (EIS). In addition, the electrochemical characteristic features of FeMo NPs were scrutinized by electrochemical techniques like cyclic voltammetry (CV) and differential pulse voltammetry technique (DPV). Interestingly, the developed FeMo NPs modified glassy carbon electrode (FeMo NPs/GCE) discloses higher peak current with lesser anodic potential on comparing to bare GCE including wider linear range (0.01-68.65 µM), lower detection limit (0.01 µM) and greater sensitivity (0.97 µAµM-1cm-2). Moreover, the as-synthesized FeMo NPs applied for selectivity, reproducibility, repeatability and storage ability to investigate the practical viability. In the presence of interfering species like cationic, anionic and biological samples, the oxidation peak current response doesn't cause any variation results disclose good selectivity towards the detection of PMH. Additionally, the practical feasibility of the FeMo NPs/GCE was tested by real samples like, commercial tablet (Phenergan 25 mg Tablets) and lake water samples which give satisfactory recovery results. All the above consequences made clear that the proposed sensor FeMo NPs/GCE exhibits excellent electrochemical behavior for electrochemical determination towards oxidation of antihistamine drug PMH.
Collapse
Affiliation(s)
- Balamurugan Arumugam
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 09, Tamil Nadu, India
| | - Balamurugan Muthukutty
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - Sayee Kannan Ramaraj
- PG & Research Department of Chemistry, Thiagarajar College, Madurai 09, Tamil Nadu, India.
| | - Jeyaraj Vinoth Kumar
- Department of Chemistry, Nanomaterials Laboratory, International Research Center, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu 626 126, India
| | - E R Nagarajan
- Department of Chemistry, Nanomaterials Laboratory, International Research Center, Kalasalingam Academy of Research and Education, Krishnankoil, Tamil Nadu 626 126, India
| |
Collapse
|
9
|
Enzyme-like electrocatalysis from 2D gold nanograss-nanocube assemblies. J Colloid Interface Sci 2020; 575:24-34. [PMID: 32344216 DOI: 10.1016/j.jcis.2020.04.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/08/2020] [Accepted: 04/20/2020] [Indexed: 11/24/2022]
Abstract
Nanotechnology's rapid development of nanostructured materials with disruptive material properties has inspired research for their use as electrocatalysts to potentially substitute enzymes. Herein, a novel electrocatalytic nanomaterial was constructed by growing gold nanograss (AuNG) on 2D nanoassemblies of gold nanocubes (AuNC). The resulting structure (NG@NC) was used for the detection of H2O2via its electrochemical reduction. The NG@NC electrode displayed a large active surface area, resulting in improved electron transfer efficiency. On the nanoscale, AuNG maintained its structure, providing high stability and reproducibility of the sensing platform. Our nanostructured electrode showed excellent catalytic activity towards H2O2 at an applied potential of -0.5 V vs Ag/AgCl. This facilitated H2O2 detection with excellent selectivity in an environment like human urine, and a linear response from 50 µM to 30 mM, with a sensitivity of 100.66 ± 4.0 μA mM-1 cm-2. The NG@NC-based sensor hence shows great potential in nonenzymatic electrochemical sensing.
Collapse
|
10
|
Hu H, Wang B, Li Y, Wang P, Yang L. Acetylcholinesterase Sensor with Patterned Structure for Detecting Organophosphorus Pesticides Based on Titanium Dioxide Sol‐gel Carrier. ELECTROANAL 2020. [DOI: 10.1002/elan.202060027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Huaying Hu
- Key Laboratory of Advanced Display and System Applications, Ministry of EducationShanghai University Yanchang Road 149 Shanghai 200072 China
| | - Bo Wang
- Key Laboratory of Advanced Display and System Applications, Ministry of EducationShanghai University Yanchang Road 149 Shanghai 200072 China
| | - Yiru Li
- Key Laboratory of Advanced Display and System Applications, Ministry of EducationShanghai University Yanchang Road 149 Shanghai 200072 China
| | - Pengchang Wang
- Key Laboratory of Advanced Display and System Applications, Ministry of EducationShanghai University Yanchang Road 149 Shanghai 200072 China
| | - Lianqiao Yang
- Key Laboratory of Advanced Display and System Applications, Ministry of EducationShanghai University Yanchang Road 149 Shanghai 200072 China
| |
Collapse
|
11
|
Garg M, Vishwakarma N, Sharma AL, Mizaikoff B, Singh S. Lysine-Functionalized Tungsten Disulfide Quantum Dots as Artificial Enzyme Mimics for Oxidative Stress Biomarker Sensing. ACS OMEGA 2020; 5:1927-1937. [PMID: 32039329 PMCID: PMC7003197 DOI: 10.1021/acsomega.9b03655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
The color generating from the biochemical reaction between 3,3',5,5'-tetramethylbenzidine and Lysine@WS2 QDs was used a signal for the detection of hydrogen peroxide. The QDs were prepared using a combination of techniques, that is, probe sonication and hydrothermal treatment. Analysis via UV-vis spectroscopy, Fourier transform infrared and Raman spectroscopy, X-ray diffraction, energy-dispersive spectroscopy, and transmission electron microscopy yielded detailed information on the nature and characteristics of these quantum dots. Furthermore, as-synthesized quantum dots were studied for their capability to mimic peroxidase enzyme using 3,3',5,5'-tetramethylbenzidine as a substrate. Consequently, a colorimetric sensor utilizing Lysine@WS2 QDs could detect hydrogen peroxide in a range of 0.1-60 μM with a response time of 5 min. The same material was used for H2O2 detection using impedance spectroscopy, which yielded a dynamic range of 0.1-350 μM with a response time of 30-40 s.
Collapse
Affiliation(s)
- Mayank Garg
- CSIR-Central
Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neelam Vishwakarma
- CSIR-Central
Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
| | - Amit L. Sharma
- CSIR-Central
Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Boris Mizaikoff
- Institute
of Analytical and Bioanalytical Chemistry, University of Ulm, Ulm 89077, Germany
| | - Suman Singh
- CSIR-Central
Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Xie Y, Gao F, Tu X, Ma X, Dai R, Peng G, Yu Y, Lu L. Flake-like neodymium molybdate wrapped with multi-walled carbon nanotubes as an effective electrode material for sensitive electrochemical detection of carbendazim. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113468] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
13
|
Facile Fabrication of Hierarchical rGO/PANI@PtNi Nanocomposite via Microwave-Assisted Treatment for Non-Enzymatic Detection of Hydrogen Peroxide. NANOMATERIALS 2019; 9:nano9081109. [PMID: 31382424 PMCID: PMC6722818 DOI: 10.3390/nano9081109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 07/30/2019] [Indexed: 12/04/2022]
Abstract
A hierarchical composite based on the modified reduced graphene oxide with platinum-nickel decorated polyaniline nano-spheres (rGO/PANI@PtNi) was facilely prepared via microwave-assisted self-reduction for an application in nonenzymatic hydrogen peroxide (H2O2) detection. Compared to the pristine rGO, the composite exhibited a much tougher surface due to the stacking of conductive PANI nano-spheres on rGO sheets, leading to good dispersion of PtNi nanoparticles and a large active area. Furthermore, the multi-valance Ni2+/3+ in the PtNi particles effectively promoted the catalytic property of Pt sites and facilitated a superior electrochemical performance of PtNi alloy than that of neat Pt. Owing to the synergistic effect of the improved electrical conductivity and the promoted electrocatalytical property, the modified glassy carbon electrode (GCE) with rGO/PANI@PtNi nanocomposite displayed an outstanding electrochemical sensitivity towards H2O2 with a fast response time (<2 s), a wide linear range (0.1–126.4 mM), a low detection limit (0.5 µM), as well as a long-life stability for one week without obvious degradation. This novel strategy opens a novel and promising approach to design high performance sensors for H2O2 detection.
Collapse
|
14
|
In-situ synthesis of hierarchically porous polypyrrole@ZIF-8/graphene aerogels for enhanced electrochemical sensing of 2, 2-methylenebis (4-chlorophenol). Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.04.132] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Singh N, Rai P, Ali MA, Kumar R, Sharma A, Malhotra BD, John R. A hollow-nanosphere-based microfluidic biosensor for biomonitoring of cardiac troponin I. J Mater Chem B 2019. [DOI: 10.1039/c9tb00126c] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cardiovascular diseases (CVDs) are the leading causes of death worldwide.
Collapse
Affiliation(s)
- Nawab Singh
- Department of Biomedical Engineering
- Indian Institute of Technology Hyderabad
- India
| | - Prabhakar Rai
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
- Wildlife Section
| | - Md. Azahar Ali
- Department of Electrical and Computer Engineering
- Iowa State University
- Ames
- USA
| | - Rudra Kumar
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - Ashutosh Sharma
- Department of Chemical Engineering
- Indian Institute of Technology Kanpur
- Kanpur
- India
| | - B. D. Malhotra
- Department of Biotechnology
- Delhi Technological University
- Delhi-110042
- India
| | - Renu John
- Department of Biomedical Engineering
- Indian Institute of Technology Hyderabad
- India
| |
Collapse
|
16
|
Karthik R, Vinoth Kumar J, Chen SM, Sundaresan P, Mutharani B, Chi Chen Y, Muthuraj V. Simple sonochemical synthesis of novel grass-like vanadium disulfide: A viable non-enzymatic electrochemical sensor for the detection of hydrogen peroxide. ULTRASONICS SONOCHEMISTRY 2018; 48:473-481. [PMID: 30080574 DOI: 10.1016/j.ultsonch.2018.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/27/2018] [Accepted: 07/04/2018] [Indexed: 05/27/2023]
Abstract
Design and fabrication of novel inorganic nanomaterials for the low-level detection of food preservative chemicals significant is of interest to the researchers. In the present work, we have developed a novel grass-like vanadium disulfide (GL-VS2) through a simple sonochemical method without surfactants or templates. As-prepared VS2 was used as an electrocatalyst for reduction of hydrogen peroxide (H2O2). The crystalline nature, surface morphology, elemental compositions and binding energy of the as-prepared VS2 were analyzed by X-ray diffraction, Raman spectroscopy, field-emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray photoelectron spectroscopy. The electrochemical studies show that the GL-VS2 modified glassy carbon electrode (GL-VS2/GCE) has a superior electrocatalytic activity and lower-reduction potential than the response observed for unmodified GCE. Furthermore, the GL-VS2/GCE displayed a wide linear response range (0.1-260 μM), high sensitivity (0.23 μA μM-1 cm-2), lower detection limit (26 nM) and excellent selectivity for detection of H2O2. The fabricated GL-VS2/GCE showed excellent practical ability for detection of H2O2 in milk and urine samples, revealing the real-time practical applicability of the sensor in food contaminants.
Collapse
Affiliation(s)
- R Karthik
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - J Vinoth Kumar
- Department of Chemistry, VHNSN College, Virudhunagar 626001, Tamil Nadu, India
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| | - P Sundaresan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - B Mutharani
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Yu Chi Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - V Muthuraj
- Department of Chemistry, VHNSN College, Virudhunagar 626001, Tamil Nadu, India
| |
Collapse
|
17
|
Sapner VS, Chavan PP, Digraskar RV, Narwade SS, Mulik BB, Mali SM, Sathe BR. Tyramine Functionalized Graphene: Metal-Free Electrochemical Non-Enzymatic Biosensing of Hydrogen Peroxide. ChemElectroChem 2018. [DOI: 10.1002/celc.201801083] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Vijay S. Sapner
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad (MH) 431004 India
| | - Parag P. Chavan
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad (MH) 431004 India
| | - Renuka V. Digraskar
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad (MH) 431004 India
| | - Shankar S. Narwade
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad (MH) 431004 India
| | - Balaji B. Mulik
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad (MH) 431004 India
| | - Shivsharan M. Mali
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad (MH) 431004 India
| | - Bhaskar R. Sathe
- Department of Chemistry; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad (MH) 431004 India
| |
Collapse
|
18
|
Pan QX, Wang JY, Cheng YZ, Li WJ, Wang XD. Determination of Hydrogen Peroxide by Electrochemiluminescence Using a Chitosan–graphene Composite Film Doped Cadmium-Tellurium Quantum Dot Modified Glassy Carbon Electrode. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1374964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Qian-Xiu Pan
- Department of Chemistry, Weifang Medical University, Weifang, China
| | - Jiang-Yun Wang
- Department of Chemistry, Weifang Medical University, Weifang, China
| | - Yuan-Zheng Cheng
- Department of Chemistry, Weifang Medical University, Weifang, China
| | - Wen-Jing Li
- Department of Chemistry, Weifang Medical University, Weifang, China
| | - Xue-Dong Wang
- Department of Chemistry, Weifang Medical University, Weifang, China
| |
Collapse
|
19
|
Gold nanocluster-based ratiometric fluorescent probes for hydrogen peroxide and enzymatic sensing of uric acid. Mikrochim Acta 2018; 185:305. [PMID: 29777313 DOI: 10.1007/s00604-018-2823-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/29/2018] [Indexed: 12/17/2022]
Abstract
A method is described for ratiometric fluorometric assays of H2O2 by using two probes that have distinct response profiles. Under the catalytic action of ferrous ion, the 615 nm emission of protein-stabilized gold nanoclusters (under 365 nm photoexcitation) is quenched by H2O2, while an increased signal is generated with a peak at 450 nm by oxidizing coumarin with the H2O2/Fe(II) system to form a blue emitting fluorophore. These decrease/increase responses give a ratiometric signal. The ratio of the fluorescences at the two peaks are linearly related to the concentration of H2O2 in the range from 0.05 to 10 μM, with a 7.7 nM limit of detection. The detection scheme was further coupled to the urate oxidase catalyzed oxidation of uric acid which proceeds under the formation of H2O2. This method provides an simple and effective means for the construction of ratiometric fluorometric (enzymatic) assays that involve the detection of H2O2. Graphical abstract Under catalysis by ferrous ion, hydrogen peroxide quenches the luminescence of gold nanoclusters (AuNCs) and oxidizes coumarin into a fluorescent derivative, which rendered fluorescence ON and OFF at two distinct wavelengths for ratiometric measurements.
Collapse
|
20
|
Vinoth Kumar J, Karthik R, Chen SM, Natarajan K, Karuppiah C, Yang CC, Muthuraj V. 3D Flower-Like Gadolinium Molybdate Catalyst for Efficient Detection and Degradation of Organophosphate Pesticide (Fenitrothion). ACS APPLIED MATERIALS & INTERFACES 2018; 10:15652-15664. [PMID: 29671570 DOI: 10.1021/acsami.8b00625] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Three-dimensional (3D) nanostructured materials have received enormous attention in energy and environment remediation applications. Herein, we developed a novel 3D flower-like gadolinium molybdate (Gd2MoO6; GdM) and used as a bifunctional catalyst for the electrochemical detection and photocatalytic degradation of organophosphate pesticide fenitrothion (FNT). The flower-like GdM catalyst was prepared via a simple sol-gel technique with the assistance of urea and ethylene glycol. The properties of GdM were confirmed by various spectroscopic and analytical techniques. The GdM catalyst played a significant role in electrochemical reduction of FNT and results in a very low detection limit (5 nM), wide linear ranges (0.02-123; 173-1823 μM), and good sensitivity (1.36 μA μM-1 cm-2). Interestingly, the GdM electrocatalyst had good recoveries to FNT in soil and water sample analysis. In addition to trace level detection, the flower-like GdM was used as the photocatalyst which portrayed an excellent photocatalytic degradation behavior to eliminate the FNT in the aqueous system. The GdM photocatalyst could degrade above 99% of FNT under UV light irradiation with good stability even after five cycles.
Collapse
Affiliation(s)
- Jeyaraj Vinoth Kumar
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , No. 1, Section 3, Chung-Hsiao East Road , Taipei 106 , Taiwan , ROC
- Department of Chemistry , VHNSN College , Virudhunagar 626001 , Tamil Nadu , India
| | - Raj Karthik
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , No. 1, Section 3, Chung-Hsiao East Road , Taipei 106 , Taiwan , ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , No. 1, Section 3, Chung-Hsiao East Road , Taipei 106 , Taiwan , ROC
| | - Karikalan Natarajan
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology , National Taipei University of Technology , No. 1, Section 3, Chung-Hsiao East Road , Taipei 106 , Taiwan , ROC
| | - Chelladurai Karuppiah
- Battery Research Center of Green Energy , Ming Chi University of Technology , New Taipei City 24301 , Taiwan , ROC
| | - Chun-Chen Yang
- Battery Research Center of Green Energy , Ming Chi University of Technology , New Taipei City 24301 , Taiwan , ROC
| | - Velluchamy Muthuraj
- Department of Chemistry , VHNSN College , Virudhunagar 626001 , Tamil Nadu , India
| |
Collapse
|
21
|
Zhu D, Ma H, Pang H, Tan L, Jiao J, Chen T. Facile fabrication of a non-enzymatic nanocomposite of heteropolyacids and CeO2@Pt alloy nanoparticles doped reduced graphene oxide and its application towards the simultaneous determination of xanthine and uric acid. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.185] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
22
|
Karthik R, Vinoth Kumar J, Chen SM, Seerangan K, Karuppiah C, Chen TW, Muthuraj V. Investigation on the Electrocatalytic Determination and Photocatalytic Degradation of Neurotoxicity Drug Clioquinol by Sn(MoO 4) 2 Nanoplates. ACS APPLIED MATERIALS & INTERFACES 2017; 9:26582-26592. [PMID: 28719176 DOI: 10.1021/acsami.7b06851] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Transition-metal molybdates have concerned enormous curiosity as supercapacitors, photocatalysts, and electrocatalysts. These materials are the best alternatives to noble-metal-based catalysts, which are generally show a limited photocatalytic and electrocatalytic activity. In addition, the antiprotozoal drug can usually pollute the environment through improper disposable and incomplete metabolism, and it is very dangerous to humans as well as aquatic animals. Therefore, here, we have studied the electrochemical determination and photodegradation of neurotoxicity clioquinol (CQL) by nanoplate-like tin molybdate (Sn(MoO4)2, denoted as SnM), which is used as both an electro- and a photocatalyst. The as-prepared catalyst delivered a highly efficient activity toward the detection and degradation of CQL. The proposed nanoplate-like SnM was prepared through a simple wet-chemical route, and its physicochemical properties were characterized by various spectroscopic and analytical techniques. As an electrochemical sensor, the SnM electrocatalyst exhibited tremendous activity for the detection of CQL in terms of lower potential and enhanced anodic peak current. In addition, it showed high selectivity, a wide linear concentration range, a lower detection limit, and good sensitivity. From the UV-vis spectroscopy study, the SnM photocatalyst delivered an excellent photocatalytic activity toward the degradation of CQL in terms of increasing contact time and reducing CQL concentration, resulting in the increasing of the degradation efficiency about 98% within 70 min under visible light irradiation and showing an appreciable stability by observation of the reusability of the catalyst.
Collapse
Affiliation(s)
- Raj Karthik
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology , No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | | | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology , No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Kumar Seerangan
- Institute of Plant and Microbial Biology (IPMB), Academia Sinica , Taipei, Taiwan, ROC
| | - Chelladurai Karuppiah
- Battery Research Center of Green Energy, Ming Chi University of Technology , New Taipei City, 24301, Taiwan, ROC
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology , No. 1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Velluchamy Muthuraj
- Department of Chemistry, VHNSN College , Virudhunagar 626001, Tamilnadu, India
| |
Collapse
|