1
|
Xu D, Zhou L, Zhang S, Wang Z, Yang W, Guo Q, Wang Z, Chen J. Facile fabrication of Au-Ag alloy nanoparticles/Ag nanowires SERS substrates with bimetallic synergistic effect for ultra-sensitive detection of crystal violet and alkali blue 6B. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124981. [PMID: 39154405 DOI: 10.1016/j.saa.2024.124981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
The bimetallic nanostructure of Au and Ag can integrate two distinct properties into a novel substrate compared to single metal nanostructures. This work presents a rapid and sensitive surface-enhanced Raman scattering (SERS) substrate for detecting illegal food additives and dyes of crystal violet (CV) and alkali blue 6B (AB 6B). Au-Ag alloy nanoparticles/Ag nanowires (Au-Ag ANPs/Ag NWs) were prepared by solid-state ionics method and vacuum thermal evaporation method at 5μA direct current electric field (DCEF), the molar ratio of Au to Ag was 1:18.34. Many 40 nm-140 nm nanoparticles regularly existed on the surface of Ag NWs with the diameters from 80 nm to 150 nm. The fractal dimension of Au-Ag ANPs/Ag NWs is 1.69 due to macroscopic dendritic structures. Compared with single Ag NWs, the prepared Au-Ag ANPs/Ag NWs substrates show superior SERS performance because of higher surface roughness, the SERS active of Ag NWs and bimetallic synergistic effect caused by Au-Ag ANPs, so the limit of detections (LOD) of Au-Ag ANPs/Ag NWs SERS substrates toward detection of CV and AB 6B were as low as 10-16mol/L and 10-9mol/L, respectively. These results indicate that Au-Ag ANPs/Ag NWs substrates can be used for rapid and sensitive detection of CV and AB 6B and have great development potential for detection of illegal food additives and hazardous substances in the fields of environmental monitoring and food safety.
Collapse
Affiliation(s)
- Dapeng Xu
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, PR China.
| | - Lin Zhou
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, PR China
| | - Song Zhang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, PR China
| | - Zhanpeng Wang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, PR China
| | - Wei Yang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, PR China
| | - Qiaoqin Guo
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, PR China
| | - Zixiong Wang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, PR China
| | - Jian Chen
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, PR China.
| |
Collapse
|
2
|
Xu D, Zhang T, Zhang S, Li J, Yang W, Jiang H. Centimeter level high surface roughness copper / silver nanoheterostructures for highly sensitive SERS detection. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2023.123916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
3
|
Wu Y, Han S, Li Y, Shen W. Fabrication of monodisperse gold-copper nanocubes and AuCu-cuprous sulfide heterodimers by a step-wise polyol reduction. J Colloid Interface Sci 2022; 626:136-145. [DOI: 10.1016/j.jcis.2022.06.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 10/31/2022]
|
4
|
Xu D, Li J, Zhang S, Zhang Y, Yang W, Wang Z, Chen J. A novel and controllable SERS system for crystal violet and Rhodamine B detection based on copper nanonoodle substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 275:121165. [PMID: 35313175 DOI: 10.1016/j.saa.2022.121165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/26/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
Copper nanostructures have attracted more and more attention due to low preparation cost, similar thermal conductivity and optical characteristics to silver nanostructures. A novel macroscopic dendritic copper nanonoodles with the length of 3-50 mm prepared by solid-state ionics method at 10 μA direct current electric field (DCEF) using fast ionic conductor RbCu4Cl3I2 films was reported. The surface-enhanced Raman scattering (SERS) performance of prepared copper nanonoodles was detected by crystal violet (CV) and rhodamine B (RB) aqueous solution as analyte molecules. The results present that the copper nanonoodles assembled by short-range order copper nanowires and the diameters of nanowires changed from 20 nm to 80 nm, many regularly arranged nanoparticles with the diameter from 5 to 10 nm existed on the prepared copper nanonoodles, which lead to the nanonoodles have high surface roughness. The copper nanonoodles contain only Cu element, no O element and the fractal dimension of copper nanonoodles is 1.355 because of macroscopic dendritic structures. The prepared copper nanonoodles composed of pure Cu have high surface roughness and the free electrons on the rough copper nanonoodles resonate with the atomic nuclei inside the copper nanonoodles to form a locally enhanced electromagnetic field under the excitation of incident light, so the limiting concentrations for CV and RB detected by the prepared copper nanonoodles are as low as 1 × 10-11 mol/L and 1 × 10-12 mol/L, respectively. The centimeter-scale copper nanonoodles with low limiting concentration of analyte molecules can be used to detect harmful food additives.
Collapse
Affiliation(s)
- Dapeng Xu
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China.
| | - Jiajia Li
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Song Zhang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Yifan Zhang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Wei Yang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Zixiong Wang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Jian Chen
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China.
| |
Collapse
|
5
|
Lv B, Hu Q, Wang P, Zhu JL, Ma W, Dong Z, Cao Y, Sun JL. Growth mechanism and photoelectric properties of a silver nanowire network prepared by solid state ionics method. NANOTECHNOLOGY 2020; 31:455201. [PMID: 32717725 DOI: 10.1088/1361-6528/aba979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A macroscopic silver nanowire (AgNW) network is grown by solid state ionics method. The ion flow during growth of the AgNW network is controlled by maintaining a current in the order of 10-7 A. Scanning electron microscopy (SEM) analysis reveals that the growth direction of AgNWs in the network is irregular and spread evenly in all directions and the nanowires are 40-160 nm in diameter. The microcosmic mechanism of silver nanostructures grown by the solid state ionics method is established by real time and in situ SEM analysis of the growth process of the AgNW networks. To study the photoelectric properties of the network, a self-supported AgNW network sample (∼1 mm wide and 8 mm long) is irradiated with lasers of different wavelengths of 375, 405, 532, 633, 808, and 1064 nm and 10.6 μm, and changes in the current between the two ends of the sample are recorded. The network displays negative photoconductance effect, and the maximum light responsivity is 43 mA W-1. The network displays light responsivity in the ultraviolet light-to-mid-infrared light region, with response times of tens of milliseconds. These findings indicate that the AgNW network has broad application prospect in ultra-wide spectrum photoelectric detection.
Collapse
Affiliation(s)
- Bocheng Lv
- Collaborative Innovation Center of Quantum Matter, State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Wang Z, Liu R, Feng Z, Lin L, Xie R, Li J, Liu H, Huang F, Zheng Z. Hierarchical growth and morphological control of ordered Cu–Au alloy arrays with high surface enhanced Raman scattering activity. CrystEngComm 2020. [DOI: 10.1039/c9ce01434a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Low-cost Cu–Au alloy hierarchical structures are fabricated by coelectrodeposition, and the highest SERS activity is obtained when the atom ratio of Cu and Au is about 88 : 12.
Collapse
Affiliation(s)
- Zhezhe Wang
- College of Physics and Energy
- Fujian Normal University
- Fuzhou
- China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials
| | - Ruihua Liu
- College of Physics and Energy
- Fujian Normal University
- Fuzhou
- China
| | - Zhuohong Feng
- College of Physics and Energy
- Fujian Normal University
- Fuzhou
- China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials
| | - Lin Lin
- College of Physics and Energy
- Fujian Normal University
- Fuzhou
- China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials
| | - Rongrong Xie
- College of Environmental Science and Engineering
- Fujian Normal University
- Fuzhou 350007
- China
| | - Jiabing Li
- School of Plant, Environmental and Soil Sciences
- Louisiana State University
- Baton Rouge
- USA
- College of Environmental Science and Engineering
| | - Heguang Liu
- School of Materials Science and Engineering
- Xi'an University of Technology
- China
| | - Feng Huang
- College of Physics and Energy
- Fujian Normal University
- Fuzhou
- China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials
| | - Zhiqiang Zheng
- College of Physics and Energy
- Fujian Normal University
- Fuzhou
- China
- Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials
| |
Collapse
|
7
|
Xu D, Kang W, Zhang S, Yang W, Jiang H, Lei Y, Chen J. Fractal theory and controllable preparation of centimeter level silver nanowire arrays and their application in melamine detection as SERS substrates. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 221:117184. [PMID: 31158773 DOI: 10.1016/j.saa.2019.117184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/23/2019] [Accepted: 05/26/2019] [Indexed: 06/09/2023]
Abstract
Silver nanowire arrays as surface-enhanced Raman scattering (SERS) substrates were prepared by a solid-state ionics method under the direct current electric field (DCEF) and used to rapidly detect melamine in aqueous solutions. The arrangement density and surface roughness of the prepared silver nanowire arrays are significantly different upon a change in the impressed current intensity. The growth mechanism of silver nanowire arrays was associated with the apical growth advantage and the irregular electrode interface. When the current intensity was 4 μA and 10 μA, the fractal dimension of silver nanowire arrays was 1.66 and 1.49, the diameters of nanowires ranged from 90 to 130 nm and 90 to 170 nm, and many densely arranged and regularly arranged silver nanoparticles lie in the prepared nanowire arrays, respectively. The result shows that there were more silver nanostructures and surface roughness under 4 μA DCEF. The Raman signal intensity of melamine molecule shows that the prepared SERS substrate exhibited a high sensitivity. The proposed method allow us detect melamine with a limit of 10-15 mol/L and 10-12 mol/L, which are lower than the safety limit estimated by the US food and Drug Administration. With its facile material synthesis, simple detection procedure and low detection concentration, this silver nanowire arrays with high surface roughness indicates a strong potential detection technique in the field of food safety.
Collapse
Affiliation(s)
- Dapeng Xu
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China.
| | - Weigang Kang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Song Zhang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Wei Yang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Hengze Jiang
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Yaping Lei
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China
| | - Jian Chen
- School of Materials Science and Chemical Engineering, Xi'an Technological University, Xi'an 710032, People's Republic of China.
| |
Collapse
|
8
|
Quantitative determination of melamine in milk by surface-enhanced Raman scattering technique based on high surface roughness silver nanosheets assembled by nanowires. Microchem J 2019. [DOI: 10.1016/j.microc.2019.04.077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
9
|
Controlled growth of centimeter level gold nanowires via a solid-state ionics method and their SERS effect. Chem Phys 2018. [DOI: 10.1016/j.chemphys.2018.07.035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Li H, Men D, Sun Y, Liu D, Li X, Li L, Li C, Cai W, Li Y. Surface enhanced Raman scattering properties of dynamically tunable nanogaps between Au nanoparticles self-assembled on hydrogel microspheres controlled by pH. J Colloid Interface Sci 2017. [DOI: 10.1016/j.jcis.2017.06.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|