1
|
Pd-Ru anchored on CaO derived from waste-eggshells for ethanol oxidation electrocatalysis. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Facile synthesis of AgPt nano-pompons for efficient methanol oxidation: Morphology control and DFT study on stability enhancement. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.01.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Three-dimensional heterogeneous copper cobalt phosphides Nanoflowers for enhancing catalytic performance for electro-oxidation of methanol. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.06.054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
One-pot synthesis of rugged PdRu nanosheets as the efficient catalysts for polyalcohol electrooxidation. J Colloid Interface Sci 2021; 601:42-49. [PMID: 34052725 DOI: 10.1016/j.jcis.2021.05.079] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/17/2022]
Abstract
Recently, intensive attention has been attracted to the two-dimensional metal nanosheets, owing to their excellent electrocatalytic performance for direct alcohol fuel cells (DAFCs). Herein, PdRu nanosheets have been synthesized successfully by a facile one-pot method. The rugged nanosheet structure provided plentiful surface active sites to enhance the electrocatalytic activity. Moreover, benefiting from the synergistic effect and improved electronic structure, PdRu NSs exhibited splendid electrocatalytic performance in ethylene glycol oxidation reaction (EGOR) and glycerol oxidation reaction (GOR). Specifically, the mass activity of PdRu NSs was 1.72 and 3.69 times over those of Pd NSs and Pd/C catalysts in EGOR. Moreover, PdRu NSs displayed the largest mass activity in GOR, 1.48 and 2.47 times as large as Pd NSs and Pd/C catalysts. The results of stability tests demonstrated that the durability of PdRu NSs was the highest among the obtained catalysts. This work plays a directive role on the in-depth engineering on Pd-based catalysts with nanosheet architectures.
Collapse
|
5
|
Yang B, Zhang W, Hu S, Liu C, Wang X, Fan Y, Jiang Z, Yang J, Chen W. Bidirectional controlling synthesis of branched PdCu nanoalloys for efficient and robust formic acid oxidation electrocatalysis. J Colloid Interface Sci 2021; 600:503-512. [PMID: 34023708 DOI: 10.1016/j.jcis.2021.05.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/03/2021] [Accepted: 05/04/2021] [Indexed: 11/15/2022]
Abstract
Through a two-way control of hexadecyl trimethyl ammonium bromide (CTAB) and hydrochloric acid (HCl), the PdCu nanoalloys with branched structures are synthesized in one step by hydrothermal reduction and used as electrocatalysts for formic acid oxidation reaction (FAOR). In this two-way control strategy, the CTAB is used as a structure-oriented surfactant, while a certain amount of HCl is used to control the reaction kinetics for achieving gradual growth of multi-dendritic structures. The characterizations including scanning transmission electron microscope (STEM), X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) suggest that PdCu nanoalloys with unique multi-dendritic branches have favorable electronic structure and lattice strain for electrocatalyzing the oxidation of formic acid. In specific, among the electrocatalysts with different Pd/Cu ratios, the Pd1Cu1 branched nanoalloys have the largest electrochemically active surface area (ECSA) and the best performance for the FAOR. The catalytic activity of the Pd1Cu1 branched nanoalloys is 2.4 times that of commercial Pd black. After the chronoamperometry test, the Pd1Cu1 branched nanoalloys still maintain their original morphologies and higher current density than that of the commercial Pd black. In addition, in the CO-stripping tests, the initial oxidation potential and the oxidation peak potential of the PdCu branched nanoalloys for CO adsorption are lower than those of commercial Pd balck, evincing their better anti-poisoning performance.
Collapse
Affiliation(s)
- Bo Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Wanqing Zhang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Shenglan Hu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chengzhou Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Xiaoqu Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Youjun Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| | - Zhe Jiang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Jun Yang
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, No.19A.Yuquan.Road Beijing 100049, China; Nanjing IPE Institute of Green Manufacturing Industry, Nanjing, Jiangsu 211100, China.
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China.
| |
Collapse
|
6
|
Huizi Li, Dong Q, Hong L, Qin Q, Xie J, Yu G, Chen H. PdRu Nanoparticles Supported on Functionalized Titanium Carbide—a Highly Efficient Catalyst for Formic Acid Electro-Oxidation. RUSS J ELECTROCHEM+ 2021. [DOI: 10.1134/s1023193520120113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Tong Y, Yan X, Liang J, Dou SX. Metal-Based Electrocatalysts for Methanol Electro-Oxidation: Progress, Opportunities, and Challenges. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e1904126. [PMID: 31608601 DOI: 10.1002/smll.201904126] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 08/23/2019] [Indexed: 06/10/2023]
Abstract
Direct methanol fuel cells (DMFCs) are among the most promising portable power supplies because of their unique advantages, including high energy density/mobility of liquid fuels, low working temperature, and low emission of pollutants. Various metal-based anode catalysts have been extensively studied and utilized for the essential methanol oxidation reaction (MOR) due to their superior electrocatalytic performance. At present, especially with the rapid advance of nanotechnology, enormous efforts have been exerted to further enhance the catalytic performance and minimize the use of precious metals. Constructing multicomponent metal-based nanocatalysts with precisely designed structures can achieve this goal by providing highly tunable compositional and structural characteristics, which is promising for the modification and optimization of their related electrochemical properties. The recent advances of metal-based electrocatalytic materials with rationally designed nanostructures and chemistries for MOR in DMFCs are highlighted and summarized herein. The effects of the well-defined nanoarchitectures on the improved electrochemical properties of the catalysts are illustrated. Finally, conclusive perspectives are provided on the opportunities and challenges for further refining the nanostructure of metal-based catalysts and improving electrocatalytic performance, as well as the commercial viability.
Collapse
Affiliation(s)
- Yueyu Tong
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
| | - Xiao Yan
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
- Guangdong Key Laboratory of Membrane Materials and Membrane Separation, Guangzhou Institute of Advanced Technology, Chinese Academy of Sciences, Guangzhou, 511458, China
| | - Ji Liang
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
- Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Materials Science and Engineering, Tianjin University, Tianjin, 300350, China
| | - Shi Xue Dou
- Institute for Superconducting and Electronic Materials, Australian Institute of Innovative Materials, University of Wollongong, North Wollongong, NSW, 2500, Australia
| |
Collapse
|
8
|
Duan JJ, Zheng XX, Niu HJ, Feng JJ, Zhang QL, Huang H, Wang AJ. Porous dendritic PtRuPd nanospheres with enhanced catalytic activity and durability for ethylene glycol oxidation and oxygen reduction reactions. J Colloid Interface Sci 2020; 560:467-474. [DOI: 10.1016/j.jcis.2019.10.082] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/19/2019] [Accepted: 10/21/2019] [Indexed: 11/29/2022]
|
9
|
Tin oxide as a promoter for copper@palladium nanoparticles on graphene sheets during ethanol electro-oxidation in NaOH solution. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2019.111816] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
10
|
Douk AS, Saravani H, Farsadrooh M, Noroozifar M. An environmentally friendly one-pot synthesis method by the ultrasound assistance for the decoration of ultrasmall Pd-Ag NPs on graphene as high active anode catalyst towards ethanol oxidation. ULTRASONICS SONOCHEMISTRY 2019; 58:104616. [PMID: 31450305 DOI: 10.1016/j.ultsonch.2019.104616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 06/10/2023]
Abstract
An environmentally friendly one-pot synthesis approach for the decoration of Pd-Ag nanoparticles with the ultrasmall size on graphene (Pd-Ag/G) by the assistance of ultrasound is proposed in this paper. This method offers exceptional advantages over other approaches such as environmentally friendly synthesis, being low temperature, reductant, surfactant free, simple, fast and one-pot synthesis. In this work, silver formate is added to the graphene suspension at 25 °C. Then, PdCl2 is added to the suspension under stirring to fabricate Pd-Ag/G. The uniform dispersity of nanoparticles with an average size of about 2-3 nm is well confirmed by transmission electron microscopy micrographs. The resultant catalyst is applied as anode electrocatalyst towards electrooxidation reaction of ethanol. The Pd-Ag/G catalyst displays exceptional catalytic activity and durability towards electro-oxidation of ethanol. According to the obtained results, it be concluded that the combination of Ag and Pd, ultrasmall and uniform distribution of Pd-Ag nanoparticles led to the improvement of electrocatalytic activity of the Pd-Ag/G catalyst.
Collapse
Affiliation(s)
- Abdollatif Shafaei Douk
- Department of Chemistry, University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran.
| | - Hamideh Saravani
- Department of Chemistry, University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran.
| | - Majid Farsadrooh
- Department of Chemistry, University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran
| | - Meissam Noroozifar
- Department of Chemistry, University of Sistan and Baluchestan, P.O. Box 98135-674, Zahedan, Iran
| |
Collapse
|
11
|
El-Khatib K, Abdel Hameed R, Amin R, Fetohi AE. Core-shell structured Pt-transition metals nanoparticles supported on activated carbon for direct methanol fuel cells. Microchem J 2019. [DOI: 10.1016/j.microc.2018.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Preparation and electrocatalytic performance of nanoporous Pd/Sn and Pd/Sn-CuO composite catalysts. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.11.095] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Yin Y, Ma N, Xue J, Wang G, Liu S, Li H, Guo P. Insights into the Role of Poly(vinylpyrrolidone) in the Synthesis of Palladium Nanoparticles and Their Electrocatalytic Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:787-795. [PMID: 30600997 DOI: 10.1021/acs.langmuir.8b04032] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Four types of palladium (Pd) nanoparticles were prepared from the systems containing PdCl2 or Na2PdCl4 with or without the assistance of poly(vinylpyrrolidone) (PVP). Two types of Pd nanoparticles obtained in the absence of PVP were obviously larger than those synthesized with the assistance of PVP. The former large Pd particles showed typical features in cyclic voltammetry in H2SO4 solution, whereas two types of small Pd nanoparticles did not. However, small nanoparticles treated first in an electrochemical way in 0.5 M KOH solution displayed the adsorption and desorption peaks similar to those of typical Pd-modified electrodes in H2SO4 solution. Large Pd nanoparticles from the PdCl2 synthesis system showed a catalytic specific current of 629 mA/mg in the electrocatalysis of ethanol, whereas large particles from the Na2PdCl4 system showed a current of 262 mA/mg. The maximum catalytic currents of small Pd nanoparticles without surface cleaning treatment were 1382 and 1019 mA/mg for samples from the Na2PdCl4 and PdCl2 systems, respectively, higher than those being treated in KOH solution first, and the electrocatalytic stability of the two untreated samples was better. However, small nanoparticles after the electrochemical treatment can reach the maximum catalytic current faster. The synthesis and structure-property relation of four types of Pd nanoparticles have been discussed and analyzed on the basis of systematically experimental data.
Collapse
Affiliation(s)
- Yanru Yin
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering , Qingdao University , Qingdao 266071 , P. R. China
| | - Ning Ma
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering , Qingdao University , Qingdao 266071 , P. R. China
| | - Jing Xue
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering , Qingdao University , Qingdao 266071 , P. R. China
| | - Guoqiang Wang
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering , Qingdao University , Qingdao 266071 , P. R. China
| | - Shuibo Liu
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering , Qingdao University , Qingdao 266071 , P. R. China
| | - Hongliang Li
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering , Qingdao University , Qingdao 266071 , P. R. China
| | - Peizhi Guo
- Institute of Materials for Energy and Environment, State Key Laboratory Breeding Based of New Fiber Materials and Modern Textile, School of Materials Science and Engineering , Qingdao University , Qingdao 266071 , P. R. China
| |
Collapse
|
14
|
Chen XL, Wen GL, Huang H, Wang AJ, Wang ZG, Feng JJ. Uric acid supported one-pot solvothermal fabrication of rhombic-like Pt 35Cu 65 hollow nanocages for highly efficient and stable electrocatalysis. J Colloid Interface Sci 2019; 540:486-494. [PMID: 30665171 DOI: 10.1016/j.jcis.2019.01.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 11/19/2022]
Abstract
High activity and good durability of electrocatalysts are of significance in practical applications of fuel cells. Among them, multi-component metallic hollow nanocages/nanoframes show great potential as advanced catalysts because of their highly open structures, large surface area and good stability. Herein, we report a general uric acid-mediated solvothermal method for shape-controlled synthesis of rhombic-like Pt35Cu65 hollow nanocages (HNCs) with uric acid as co-reductant and co-structure-directing agent. Uric acid and cetyltrimethylammonium chloride (CTAC) played important roles in the hollow cages. The specific architectures showed remarkably enhanced catalytic properties towards glycerol oxidation reaction (GOR), ethylene glycol oxidation reaction (EGOR) and oxygen reduction reaction (ORR) with the enhanced specific activity, outperforming commercial Pt/C (20 wt%). This work provides a new avenue for rational design of novel bimetallic nanocatalysts with enhanced characters in energy storage and conversion.
Collapse
Affiliation(s)
- Xue-Lu Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Gui-Lin Wen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hong Huang
- College of Biological, Chemical Science and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Ai-Jun Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| | - Zhi-Gang Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiu-Ju Feng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Life Sciences, College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China.
| |
Collapse
|
15
|
Li R, Yuan H, Ma Z, Tang B, Li J, Wang X. Facile coupling of content design and efficient modulation on the activity of CNT-supported PdAgCu nanoparticle electrocatalysts: Leaching lift-up and annealing fall-off. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.10.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
16
|
Xu X, Wang X, Huo S, Chen Z, Zhao H, Xu J. Facile synthesis of PdIr nanoporous aggregates as highly active electrocatalyst towards methanol and ethylene glycol oxidation. Catal Today 2018. [DOI: 10.1016/j.cattod.2017.09.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
17
|
Size-controllable synthesis of dendritic Pd nanocrystals as improved electrocatalysts for formic acid fuel cells’ application. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2018.01.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Xu H, Song P, Fernandez C, Wang J, Shiraishi Y, Wang C, Du Y. Surface plasmon enhanced ethylene glycol electrooxidation based on hollow platinum-silver nanodendrites structures. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Experimental and DFT investigation of 3D-HBGP/Pt/Co as a superb electrocatalyst for methanol oxidation reaction. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.05.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Štrbac S, Maksić A, Rakočević Z. Methanol oxidation on Ru/Pd(poly) in alkaline solution. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.06.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Xu H, Song P, Zhang Y, Du Y. 3D-2D heterostructure of PdRu/NiZn oxyphosphides with improved durability for electrocatalytic methanol and ethanol oxidation. NANOSCALE 2018; 10:12605-12611. [PMID: 29938253 DOI: 10.1039/c8nr03386b] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The rational design and engineering of bimetallic Pd-based nanocatalysts with both high activity and durability are of paramount significance for the practical applications of fuel cells. Herein, a new class of well-defined 2D NiZn oxyphosphide nanosheets (NiZnP NSs) have been successfully engineered to support unique 3D PdRu nanoflowers (PdRu NFs) via a facile strategy. Such nanohybrids with abundant surface active areas and modified electronic structure exhibit a great enhancement in electrocatalytic activity for the methanol oxidation reaction (MOR) and ethanol oxidation reaction (EOR), whose mass/specific activities are 1739.5 mA mg-1/4.5 mA cm-2 and 4719.8 mA mg-1/12.3 mA cm-2, which are 8.3/9.0 and 8.3/9.5 times higher than those of commercial Pd/C catalysts, respectively. More interestingly, with the remarkable promotional effect of NiZnP NSs, such 3D-2D PdRu/NiZn oxyphosphide nanohybrids can even retain 72.4% and 70.1% of initial catalytic activity toward MOR and EOR for 1000 potential cycles with negligible morphological or compositional variations. The successful construction of this new class of electrocatalysts opens up a new way for designing 3D-2D nanohybrids with high performance for electrochemical reactions and beyond.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | | | | | | |
Collapse
|
22
|
Xu H, Song P, Gao F, Shiraishi Y, Du Y. Hierarchical branched platinum-copper tripods as highly active and stable catalysts. NANOSCALE 2018; 10:8246-8252. [PMID: 29683169 DOI: 10.1039/c8nr01962b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Designing and manipulating the structure of nanomaterials can efficiently tailor their catalytic properties, enabling the promotion of both their activity and stability. We herein report the shape-controlled synthesis of advanced Pt-Cu hierarchical tripod nanocrystals (HTNCs) by controlling the amount of KI and reaction time. The as-prepared nanocrystals (NCs) look like a typical tripod on the whole, consisting of similar branch structural units. In addition, the structure of the HTNCs could also be obtained with a narrow Pt/Cu feeding ratio. Owing to the unique HTNC structure and exposed high-index facets, as well as probable electronic effects between Cu and Pt, the as-obtained Pt-Cu HTNCs can exhibit greatly enhanced electrocatalytic activity toward ethylene glycol oxidation reaction (EGOR) and glycerol oxidation (GOR), which are 5.1 and 6.5 times higher in mass activity, as well as 5.6 and 7.3 times higher in specific activity relative to commercial Pt/C, showing that they are a class of promising electrocatalyst for fuel cells. This work presents huge opportunities for optimizing the electrocatalytic oxidation reaction by designing the structure of nanocatalysts.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | | | | | | | | |
Collapse
|
23
|
Yoon S, Oh K, Liu F, Seo JH, Somorjai GA, Lee JH, An K. Specific Metal–Support Interactions between Nanoparticle Layers for Catalysts with Enhanced Methanol Oxidation Activity. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00276] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sinmyung Yoon
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kyunghwan Oh
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Fudong Liu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Ji Hui Seo
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Gabor A. Somorjai
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Chemical Sciences and Materials Sciences Divisions, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jun Hee Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Kwangjin An
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
24
|
Superior ethylene glycol electrocatalysis enabled by Au-decorated PdRu nanopopcorns. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.02.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Xu H, Song P, Yan B, Wang J, Wang C, Shiraishi Y, Yang P, Du Y. Pt Islands on 3 D Nut-like PtAg Nanocrystals for Efficient Formic Acid Oxidation Electrocatalysis. CHEMSUSCHEM 2018; 11:1056-1062. [PMID: 29316263 DOI: 10.1002/cssc.201702409] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Precise control of structures offers a great opportunity to efficiently tune the catalytic performance of nanomaterials, enhacing both their activity and durability. Herein, we achieve a new class of Pt islands on 3 D nut-like PtAg nanocrystals by exploiting the lower electronegativity of Ag in conjunction with the galvanic replacement of catalytically active Pt to Ag. Such nanostructures coated with Pt nanoparticles, exhibiting exposed facets, and active surface composition enhance formic acid oxidation electrocatalysis with optimized PtAg1 nut-like catalysts and achieved a factor of 4.0 and 2.4 in mass and specific activities (1728.3 mA mg-1 and 3.31 mA cm-2 ) relative to those of the commercial Pt/C (431.2 mA mg-1 and 1.41 mA cm-2 ), respectively. Moreover, such 3 D PtAg1 nut-like catalysts also display great enhancement in durability with less decay for at last 500 cycles, showing a great potential to serve as promising catalysts for fuel cells and other applications. Our work provides a fundamental insight on the effect of the morphology toward liquid fuel electrooxidation, which may pave a new way for the fabrication of highly efficient electrocatalysts for fuel cells.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Pingping Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Bo Yan
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Caiqin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- Tokyo University of Science Yamaguchi, Sanyo-Onoda-shi, Yamaguchi, 756-0884, Japan
| | - Yukihide Shiraishi
- Chemistry Department, University of Toronto, Toronto, M5S3H4, RP, Canada
| | - Ping Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
- Chemistry Department, University of Toronto, Toronto, M5S3H4, RP, Canada
| |
Collapse
|
26
|
Xu H, Song P, Wang J, Gao F, Zhang Y, Guo J, Du Y, Di J. Visible-Light-Improved Catalytic Performance for Methanol Oxidation Based on Plasmonic PtAu Dendrites. ChemElectroChem 2018. [DOI: 10.1002/celc.201701345] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Pingping Song
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Jun Guo
- Testing and Analysis Center; Soochow University; Jiangsu 215123 P.R. China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Junwei Di
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| |
Collapse
|
27
|
Xu H, Yan B, Li S, Wang J, Wang C, Guo J, Du Y. One-pot fabrication of N-doped graphene supported dandelion-like PtRu nanocrystals as efficient and robust electrocatalysts towards formic acid oxidation. J Colloid Interface Sci 2018; 512:96-104. [DOI: 10.1016/j.jcis.2017.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/11/2017] [Accepted: 10/12/2017] [Indexed: 11/29/2022]
|
28
|
Chen S, Xu H, Yan B, Li S, Dai J, Wang C, Shiraishi Y, Du Y. Highly active electrooxidation of ethylene glycol enabled by pinecone-like Pd–Au–Ag nanocatalysts. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2017.11.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Wen Y, Ren F, Bai T, Xu H, Du Y. Facile construction of trimetallic PtAuRu nanostructures with highly porous features and perpendicular pore channels as enhanced formic acid catalysts. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2017.10.049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Du Y, Yang P. Sub-5nm monodispersed PdCu nanosphere with enhanced catalytic activity towards ethylene glycol electrooxidation. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.01.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Zhai C, Hu J, Zhu M. Three dimensional PdAg nanoflowers as excellent electrocatalysts towards ethylene glycol oxidation. J Electroanal Chem (Lausanne) 2017. [DOI: 10.1016/j.jelechem.2017.10.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
32
|
Xu H, Wang J, Yan B, Li S, Wang C, Shiraishi Y, Yang P, Du Y. Facile construction of fascinating trimetallic PdAuAg nanocages with exceptional ethylene glycol and glycerol oxidation activity. NANOSCALE 2017; 9:17004-17012. [PMID: 29082407 DOI: 10.1039/c7nr06737b] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Highly open metallic nanocages represent a novel class of nanostructures for advanced catalytic applications in direct liquid fuels cells due to their specific capability of providing easy access to reactants in both internal and external active sites and also desirable electronic structures for the adsorption of molecules, which render superior catalytic performances. However, to date, the rational design of trimetallic nanocages with tunable compositions remains a challenge. Herein, we demonstrate a facile method combining seed mediated and galvanic replacement for the preparation of unique trimetallic Pd-Au-Ag nanocages catalysts with tunable compositions. A series of controlled experiments reveal that the reaction time plays a crucial role in affecting the morphology of the final product. Importantly, the newly-generated Pd-Au-Ag nanocages are high-performance electrocatalysts for the oxidation of both ethylene glycol and glycerol with mass activities of 7578.2 and 5676.1 mA mg-1, respectively, which are far superior to that of commercial Pd/C. We firmly believe that the strategy and enhanced electrocatalysts developed in this study can be well applied to boost the commercial development of fuel cell technologies.
Collapse
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Xu H, Yan B, Zhang K, Wang J, Li S, Wang C, Xiong Z, Shiraishi Y, Du Y. Self-Supported Worm-like PdAg Nanoflowers as Efficient Electrocatalysts towards Ethylene Glycol Oxidation. ChemElectroChem 2017. [DOI: 10.1002/celc.201700611] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Bo Yan
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Ke Zhang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Jin Wang
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Shumin Li
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Caiqin Wang
- Department of Chemistry University of Toronto; Toronto M5S3H4 Canada
| | - Zhiping Xiong
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
| | - Yukihide Shiraishi
- Tokyo University of Science Yamaguchi; Sanyo-Onoda-shi Yamaguchi 756-0884 Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science; Soochow University; Suzhou 215123 P.R. China
- Tokyo University of Science Yamaguchi; Sanyo-Onoda-shi Yamaguchi 756-0884 Japan
| |
Collapse
|