1
|
Gao Y, Li X, Yang Y, Wang H, Niu X. CMCS-PVA@CA hydrogel dressing: A promoter of wound healing with MRSA virulence attenuation function. Int J Biol Macromol 2025; 295:139614. [PMID: 39793835 DOI: 10.1016/j.ijbiomac.2025.139614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
Traditional wound dressings, primarily centered on antimicrobial or bactericidal strategies, have inadvertently contributed to the rise of drug-resistant bacterial colonies at wound sites, thus prolonging the healing process. In this study, we developed an innovative hydrogel dressing, CMCS-PVA@CA, incorporating carboxymethyl chitosan (CMCS), polyvinyl alcohol (PVA), and cichoric acid (CA), specifically designed to treat skin wounds infected with methicillin-resistant Staphylococcus aureus (MRSA). Computational biology analyses reveal that CA exerts substantial anti-virulence activity by targeting serine/threonine phosphatase (Stp1), achieving an IC50 of 3.912 μM, thereby mitigating MRSA pathogenicity. Notably, CA lacks intrinsic antibacterial properties, minimizing the risk of fostering drug resistance. Furthermore, CMCS-PVA@CA demonstrates effective wound healing acceleration and meets clinical application standards, with its robust mechanical properties enhancing patient comfort. In essence, this study presents CMCS-PVA@CA as a promising hydrogel dressing offering a viable solution for treating drug-resistant bacterial infections in skin wounds.
Collapse
Affiliation(s)
- Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China; School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723001, PR China
| | - Xuening Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Yanan Yang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China; Faculty of Food Science and Technology, Suzhou Polytechnic Institute of Agriculture, Suzhou 215008, PR China
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
2
|
Akgonullu D, O’Hagan NM, Murray BS, Connell SD, Fang Y, Linter BR, Sarkar A. Bulk and Interfacial Behavior of Potato Protein-Based Microgels. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21341-21351. [PMID: 39352068 PMCID: PMC11483775 DOI: 10.1021/acs.langmuir.4c01785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 10/16/2024]
Abstract
This study aims to understand the bulk and interfacial performance of potato protein microgels. Potato protein (PoP) was used to produce microgels of submicrometer diameter via a top-down approach of thermal cross-linking followed by high-shear homogenization of the bulk gel. Bulk "parent" gels were formed at protein concentrations [PoP] = 5-18 wt %, which subsequently varied in their bulk shear elastic modulus (G') by several orders of magnitude (1-100 kPa), G' increasing with increasing [PoP]. The PoP microgels (PoPM) formed from these parent gels had diameters varying between 100 and 300 nm (size increasing with increasing G' and [PoP]), as observed via dynamic light scattering and atomic force microscopy (AFM) of PoPM adsorbed onto silicon. Interfacial rheology (interfacial shear storage and loss moduli, Gi' and Gi″) and interfacial tension (γ) of adsorbed films of PoP (i.e., nonheated PoP) and PoPM (both at tetradecane-water interfaces) were also studied, as well as the bulk rheology of the PoPM dispersions. The results showed that PoPM dispersions (at 50 vol %) had significantly higher bulk viscosity and shear thinning properties compared to the nonmicrogelled PoP at the same overall [PoP], but the bulk rheological behavior was in sharp contrast to the interfacial rheological performance, where Gi' and Gi″ of PoP were higher than for any of the PoPM. This suggests that the deformability and size of the microgels were key in determining the interfacial rheology of the PoPM. These findings may be attributed to the limited capacity for "unfolding" and lateral interactions of the larger PoPM at the interface, which are presumed to be stiffer due to their production from the strongest PoP gels. Our study further confirmed that heating and cooling the adsorbed films of PoPM after their adsorption showed little change, highlighting that hydrogen bonding was limited between the microgel particles.
Collapse
Affiliation(s)
- Daisy
Z. Akgonullu
- Food
Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K.
| | - Nicholas M. O’Hagan
- Food
Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K.
| | - Brent S. Murray
- Food
Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K.
| | - Simon D. Connell
- Molecular
and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, U.K.
| | - Yuan Fang
- PepsiCo, Valhalla, New York, New
York 10595, United States
| | | | - Anwesha Sarkar
- Food
Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, U.K.
| |
Collapse
|
3
|
Jin H, Wen J, Wang L, Zhang Y, Sui X. Synthesis and characterization of ion-induced sodium alginate/soy protein isolate microgels for the controlled release. Food Chem 2024; 452:139588. [PMID: 38754168 DOI: 10.1016/j.foodchem.2024.139588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/04/2024] [Accepted: 05/06/2024] [Indexed: 05/18/2024]
Abstract
In this study, sodium alginate/ soy protein isolate (SPI) microgels cross-linked by various divalent cations including Cu2+, Ba2+, Ca2+, and Zn2+ were fabricated. Cryo-scanning electron microscopy observations revealed distinctive structural variations among the microgels. In the context of gastric pH conditions, the degree of shrinkage of the microgels followed the sequence of Ca2+ > Ba2+ > Cu2+ > Zn2+. Meanwhile, under intestinal pH conditions, the degree of swelling was ranked as Zn2+ > Ca2+ > Ba2+ > Cu2+. The impact of these variations was investigated through in vitro digestion studies, revealing that all microgels successfully delayed the release of β-carotene within the stomach. Within the simulated intestinal fluid, the microgel cross-linked with Zn2+ exhibited an initial burst release, while those cross-linked with Cu2+, Ba2+, or Ca2+ displayed a sustained release pattern. This research underscores the potential of sodium alginate/SPI microgels cross-linked with different divalent cations as efficient controlled-release delivery systems.
Collapse
Affiliation(s)
- Hainan Jin
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiayu Wen
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yan Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China.
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
4
|
Hong X, Tian G, Dai B, Zhou X, Gao Y, Zhu L, Liu H, Zhu Q, Zhang L, Zhu Y, Ren D, Guo C, Nan J, Liu X, Wang J, Ren T. Copper-loaded Milk-Protein Derived Microgel Preserves Cardiac Metabolic Homeostasis After Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401527. [PMID: 39007192 PMCID: PMC11425262 DOI: 10.1002/advs.202401527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Myocardial Infarction (MI) is a leading cause of death worldwide. Metabolic modulation is a promising therapeutic approach to prevent adverse remodeling after MI. However, whether material-derived cues can treat MI through metabolic regulation is mainly unexplored. Herein, a Cu2+ loaded casein microgel (CuCMG) aiming to rescue the pathological intramyocardial metabolism for MI amelioration is developed. Cu2+ is an important ion factor involved in metabolic pathways, and intracardiac copper drain is observed after MI. It is thus speculated that intramyocardial supplementation of Cu2+ can rescue myocardial metabolism. Casein, a milk-derived protein, is screened out as Cu2+ carrier through molecular-docking based on Cu2+ loading capacity and accessibility. CuCMGs notably attenuate MI-induced cardiac dysfunction and maladaptive remodeling, accompanied by increased angiogenesis. The results from unbiased transcriptome profiling and oxidative phosphorylation analyses support the hypothesis that CuCMG prominently rescued the metabolic homeostasis of myocardium after MI. These findings enhance the understanding of the design and application of metabolic-modulating biomaterials for ischemic cardiomyopathy therapy.
Collapse
Affiliation(s)
- Xiaoqian Hong
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Geer Tian
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Binyao Dai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuhao Zhou
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Ying Gao
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Lianlian Zhu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Haoran Liu
- School of Engineering, Westlake University, Hangzhou, 310023, China
| | - Qinchao Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Liwen Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Zhu
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Daxi Ren
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, 310023, China
| | - Jinliang Nan
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Xianbao Liu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Tanchen Ren
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| |
Collapse
|
5
|
Zhang Y, Li X, Wu Y, Tang X, Lu X. Preparation and properties of hydrogel photonic crystals assembled by biodegradable nanogels. J Colloid Interface Sci 2024; 663:554-565. [PMID: 38428113 DOI: 10.1016/j.jcis.2024.02.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Thermally induced physical hydrogels formed through the sol-gel transition of nanogels usually lose structural color above phase transition temperature (Tp). Herein, temperature/pH/redox-responsive nanogels that undergo sol-gel transition still keep structural colors above the Tp have been synthesized and studied. N-isopropylacrylamide (NIPAm) was copolymerized with N-tert-butylacrylamide (TBA) and N-acrylamido-l-phenylalanine (Aphe) to form P(NIPAm/TBA/Aphe) nanogel crosslinked with N,N'-bis(acryloyl)cystine (BISS) (referred to as PNTA-BISS). PNTA-BISS nanogel with a broad range of biodegradable crosslinker BISS content can achieve a reversible sol-gel transition above the Tp, surprisingly, while PNTA nanogels with a comparable content of biodegradable N,N'-Bis(acryloyl)cystam (BAC) crosslinker (referred to as PNTA-BAC) didn't form sol-gel transition. Although BISS and BAC possess same disulfide bonds with redox properties, BISS, unlike BAC, is water-soluble and features two carboxyl groups. The mechanism by which PNTA-BISS nanogels form hydrogel photonic crystals has been deeply explored with temperature-variable NMR. The results showed the introduction of Aphe with both steric hindrance and carboxyl groups greatly slowed down the shrinkage of PNTA-BISS nanogels. Therefore, PNTA-BISS nanogels can form sol-gel transition and further structural color of hydrogel photonic crystals due to carboxyl groups above the Tp. Furthermore, the properties of biodegradable hydrogel photonic crystals above the Tp were investigated for the first time, attributed to the presence of the strong reducing agent 1,4-dithiothreitol (DTT). When loaded with doxorubicin (DOX), PNTA-BISS exhibited favorable degradation properties under the influence of DTT. In summary, the PNTA-BISS nanogel, in addition to its in-situ gelation capabilities, demonstrated degradability, potentially providing a novel nanoplatform for applications in drug delivery, biotechnology, and related fields.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xueting Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Yangpu, Shanghai 244000, China
| | - Youtong Wu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoliang Tang
- College of Science, Donghua University, Shanghai 201620, China
| | - Xihua Lu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Yangpu, Shanghai 244000, China.
| |
Collapse
|
6
|
Madsen M, Khan S, Kunstmann S, Aachmann FL, Ipsen R, Westh P, Emanuelsson C, Svensson B. Unaided efficient transglutaminase cross-linking of whey proteins strongly impacts the formation and structure of protein alginate particles. FOOD CHEMISTRY: MOLECULAR SCIENCES 2022; 5:100137. [PMID: 36164490 PMCID: PMC9508153 DOI: 10.1016/j.fochms.2022.100137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/08/2022] [Accepted: 09/17/2022] [Indexed: 12/03/2022]
Abstract
Microbial transglutaminase (MTG) cross-linked >70% β-lactoglobulin (β-Lg) at pH 8.5. Initial MTG catalyzed isopeptide bond formation caused partial unfolding of β-Lg. >75% of whey protein cross-linked, forming hetero-polymers containing β-Lg. 50% less alginate is needed to form particles with cross-linked than with native β-Lg. Cross-linked β-Lg and alginate formed suspendable hydrophobically driven particles.
There is a dogma within whey protein modification, which dictates the necessity of pretreatment to enzymatic cross-linking of β-lactoglobulin (β-Lg). Here microbial transglutaminase (MTG) cross-linked whey proteins and β-Lg effectively in 50 mM NaHCO3, pH 8.5, without pretreatment. Cross-linked β-Lg spanned 18 to >240 kDa, where 6 of 9 glutamines reacted with 8 of 15 lysines. The initial isopeptide bond formation caused loss of β-Lg native structure with t1/2 = 3 h, while the polymerization occurred with t1/2 = 10 h. Further, cross-linking effects on protein carbohydrate interaction have been overlooked, leaving a gap in understanding of these complex food matrices. Complexation with alginate showed that β-Lg cross-linking decreased onset of particle formation, hydrodynamic diameter, stoichiometry (β-Lg/alginate) and dissociation constant. The complexation was favored at higher temperatures (40 °C), suggesting that hydrophobic interactions were important. Thus, β-Lg was cross-linked without pretreatment and the resulting polymers gave rise to altered complexation with alginate.
Collapse
Affiliation(s)
- Mikkel Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Sanaullah Khan
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Sonja Kunstmann
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | - Finn L. Aachmann
- Norwegian Biopolymer Laboratory (NOBIPOL), Department of Biotechnology and Food Science, NTNU Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Richard Ipsen
- Department of Food Science, University of Copenhagen, DK-1958 Frederiksberg, Denmark
| | - Peter Westh
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| | | | - Birte Svensson
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
- Corresponding author.
| |
Collapse
|
7
|
Viscoelastic characterization of the crosslinking of β-lactoglobulin on emulsion drops via microcapsule compression and interfacial dilational and shear rheology. J Colloid Interface Sci 2021; 583:404-413. [DOI: 10.1016/j.jcis.2020.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 11/18/2022]
|
8
|
Gelling Properties. Food Hydrocoll 2021. [DOI: 10.1007/978-981-16-0320-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
9
|
Teng MJ, Wei YS, Hu TG, Zhang Y, Feng K, Zong MH, Wu H. Citric acid cross-linked zein microcapsule as an efficient intestine-specific oral delivery system for lipophilic bioactive compound. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.109993] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Bahri A, Chevalier-Lucia D, Marchesseau S, Schmitt C, Gergely C, Martin M. Effect of pH change on size and nanomechanical behavior of whey protein microgels. J Colloid Interface Sci 2019; 555:558-568. [PMID: 31404840 DOI: 10.1016/j.jcis.2019.07.083] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 10/26/2022]
Abstract
Microgels specific structural and functional features are attracting high research interest in several applications such as bioactives and drug delivery or functional food ingredients. Whey protein microgels (WPM) are obtained by heat treatment of whey protein isolate (WPI) in order to promote intramolecular cross-linking. In the present work, atomic force microscopy (AFM) was used in contact mode and in liquid to investigate WPM particles topography and mechanical properties at the nanoscale at native pH (6.5) and acid pH (5.5 and 3.0). Prior to AFM, WPM particles were captured on a gold substrate via low energy interactions by means of specific monoclonal antibodies. AFM images clearly showed an increase in the size of WPM particles induced by pH decrease. AFM in force spectroscopy mode was employed to monitor the elasticity of WPMs. The obtained effective Young's modulus data showed a significant increase in stiffness at pH 5.5 and pH 3.0, over 15-fold compared to native pH. These findings indicate that the mechanical profile of the WPM network varied with the pH decrease. The WPM topographic and nanomechanical changes induced by acidification were most likely due to substantial changes in the shape and inner structure of WPM particles. Our results suggest that internally cross-linked structures, modified by acidification could display interesting functional properties when used as a food ingredient.
Collapse
Affiliation(s)
- Asma Bahri
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France; L2C, Univ Montpellier, CNRS, Montpellier, France
| | | | - Sylvie Marchesseau
- IATE, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Christophe Schmitt
- Nestlé Institute of Material Sciences, Nestlé Research, Lausanne, Switzerland
| | | | - Marta Martin
- L2C, Univ Montpellier, CNRS, Montpellier, France.
| |
Collapse
|
11
|
Zhong QK, Wu ZY, Qin YQ, Hu Z, Li SD, Yang ZM, Li PW. Preparation and Properties of Carboxymethyl Chitosan/Alginate/Tranexamic Acid Composite Films. MEMBRANES 2019; 9:membranes9010011. [PMID: 30626053 PMCID: PMC6359296 DOI: 10.3390/membranes9010011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/01/2019] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
Abstract
In this study, the porous composite films of carboxymethyl chitosan/alginate/tranexamic acid were fabricated, with calcium chloride as the crosslinking agent and glycerin as a plasticizer. The composite films were characterized by scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) spectroscopy. The properties of the composite films, including water absorption, air permeability, and cumulative release rate, were tested. In addition, their hemostatic performance was evaluated. The results showed that the appearance of the films with good adhesion was smooth and porous. FTIR showed that chemical crosslinking between carboxymethyl chitosan and sodium alginate was successful. The excellent cumulative release of tranexamic acid in the composite films (60–80%) gives the films a significant procoagulant effect. This has good prospects for the development of medical hemostasis materials.
Collapse
Affiliation(s)
- Qing-Kun Zhong
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ze-Yin Wu
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Ya-Qi Qin
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zhang Hu
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Si-Dong Li
- School of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Zi-Ming Yang
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical agricultural Sciences, Zhanjiang 524001, China.
| | - Pu-Wang Li
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical agricultural Sciences, Zhanjiang 524001, China.
| |
Collapse
|
12
|
Impacts of Size and Deformability of β-Lactoglobulin Microgels on the Colloidal Stability and Volatile Flavor Release of Microgel-Stabilized Emulsions. Gels 2018; 4:gels4030079. [PMID: 30674855 PMCID: PMC6209270 DOI: 10.3390/gels4030079] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/15/2022] Open
Abstract
Emulsions can be prepared from protein microgel particles as an alternative to traditional emulsifiers. Prior experiments have indicated that smaller and more deformable microgels would decrease both the physical destabilization of emulsions and the diffusion-based losses of entrapped volatile molecules. The microgels were prepared from β-lactoglobulin with an average diameter of 150 nm, 231 nm, or 266 nm; large microgels were cross-linked to decrease their deformability. Dilute emulsions of 15–50 μm diameter were prepared with microgels by high shear mixing. Light scattering and microscopy showed that the emulsions prepared with larger, untreated microgels possessed a larger initial droplet size, but were resistant to droplet growth during storage or after acidification, increased ionic strength, and exposure to surfactants. The emulsions prepared with cross-linked microgels emulsions were the least resistant to flocculation, creaming, and shrinkage. All emulsion droplets shrank as limonene was lost during storage, and the inability of microgels to desorb caused droplets to become non-spherical. The microgels were not displaced by Tween 20 but were displaced by excess sodium dodecyl sulfate. Hexanol diffusion and associated shrinkage of pendant droplets was not prevented by any of the microgels, yet the rate of shrinkage was reduced with the largest microgels.
Collapse
|
13
|
Ma D, Tu ZC, Wang H, Zhang Z, McClements DJ. Microgel-in-Microgel Biopolymer Delivery Systems: Controlled Digestion of Encapsulated Lipid Droplets under Simulated Gastrointestinal Conditions. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:3930-3938. [PMID: 29595967 DOI: 10.1021/acs.jafc.8b00132] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Structural design principles are increasingly being used to develop colloidal delivery systems for bioactive agents. In this study, oil droplets were encapsulated within microgel-in-microgel systems. Initially, a nanoemulsion was formed that contained small whey protein-coated oil droplets ( d43 = 211 nm). These oil droplets were then loaded into either carrageenan-in-alginate (O/MC/MA) or alginate-in-carrageenan (O/MA/MC) microgels. A vibrating nozzle encapsulation unit was used to form the smaller inner microgels ( d43 = 170-324 μm), while a hand-held syringe was used to form the larger outer microgels ( d43 = 2200-3400 μm). Calcium alginate microgels (O/MA) were more stable to simulated gastrointestinal tract (GIT) conditions than potassium carrageenan microgels (O/MC), which was attributed to the stronger cross-links formed by divalent calcium ions than the monovalent potassium ions. As a result, the microgel-in-microgel systems had different gastrointestinal fates depending upon the nature of the external microgel phase; i.e., the O/MC/MA system was more resistant to rupture than the O/MA/MC system. The rate of lipid digestion under simulated small intestine conditions decreased in the following order: free oil droplets > O/MC > O/MA > O/MA/MC > O/MC/MA. This effect was attributed to differences in the integrity and dimensions of the microgels in the small intestine, because a hydrogel network surrounding the oil droplets inhibits lipid hydrolysis by lipase. The structured microgels developed in this study may have interesting applications for the protection or controlled release of bioactive agents.
Collapse
Affiliation(s)
- Da Ma
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| | - Zong-Cai Tu
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
- College of Life Science , Jiangxi Normal University , Nanchang , Jiangxi 330022 , People's Republic of China
| | - Hui Wang
- State Key Laboratory of Food Science and Technology , Nanchang University , Nanchang , Jiangxi 330047 , People's Republic of China
| | - Zipei Zhang
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| | - David Julian McClements
- Department of Food Science , University of Massachusetts , Amherst , Massachusetts 01060 , United States
| |
Collapse
|
14
|
Effects of cross-linking on mechanical, biological properties and biodegradation behavior of Nile tilapia skin collagen sponge as a biomedical material. J Mech Behav Biomed Mater 2018; 80:51-58. [DOI: 10.1016/j.jmbbm.2018.01.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/06/2018] [Accepted: 01/09/2018] [Indexed: 12/11/2022]
|
15
|
Sharma B, Striegler S. Crosslinked Microgels as Platform for Hydrolytic Catalysts. Biomacromolecules 2018; 19:1164-1174. [DOI: 10.1021/acs.biomac.8b00019] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Babloo Sharma
- Department of Chemistry and Biochemistry, 345 North Campus Drive, University of Arkansas, Fayetteville, Arkansas 72701, United States
| | - Susanne Striegler
- Department of Chemistry and Biochemistry, 345 North Campus Drive, University of Arkansas, Fayetteville, Arkansas 72701, United States
| |
Collapse
|
16
|
Hu B, Pei F, Sun X, Liang Y, He Z, Zhang L, Li J. Fabrication of supramolecular hyperbranched polyamidoamine–dextran conjugates and their self-assembly in the presence of EGCG. NEW J CHEM 2018. [DOI: 10.1039/c8nj04162h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A supramolecular hyperbranched conjugate, HPAM–Dex, was prepared and it could self-assemble into size-controllable micelles in the presence of EGCG.
Collapse
Affiliation(s)
- Bingshen Hu
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Fanfan Pei
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Xiaoyi Sun
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Yuqing Liang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Zhiyong He
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Lili Zhang
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| | - Juan Li
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha
- China
| |
Collapse
|
17
|
Antitumor and Immunoregulatory Activities of Seleno-β-Lactoglobulin on S180 Tumor-Bearing Mice. Molecules 2017; 23:molecules23010046. [PMID: 29283364 PMCID: PMC5943936 DOI: 10.3390/molecules23010046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/17/2017] [Accepted: 12/24/2017] [Indexed: 11/17/2022] Open
Abstract
Degeneration of immune organs like thymus and spleen has been discovered in tumor-bearing mice; which increases the difficulties on oncotherapy. More effective drugs which target the protection of immune organs are expected to be researched. In this study; we aim to analyze the antitumor and immunoregulatory activities of seleno-β-lactoglobulin (Se-β-lg) on S180 tumor-bearing mice. Results indicated that Se-β-lg exhibited a remarkable inhibitory effect on S180 solid tumors with the inhibition rate of 48.38%; and protected the thymuses and spleens of S180-bearing mice. In addition, Se-β-lg could also balance the proportions of CD4+ and CD8+ T cells in spleens; thymuses and peripheral bloods; and improve Levels of IL-2; IFN-γ; TNF-α in mice serums. β-lg showed weaker bioactivities while SeO2 showed stronger toxicity on mice. Therefore our results demonstrated that Se-β-lg possessed stronger antitumor and immunoregulatory activities with lower side effects and had the potential to be a novel immunopotentiator and antitumor agent.
Collapse
|