1
|
Ren Y, Dong C, Song C, Qu Z. Spinel-Based Catalysts That Enable Catalytic Oxidation of Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20785-20811. [PMID: 39535160 DOI: 10.1021/acs.est.4c03509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Volatile organic compounds (VOCs) have caused serious harm to human health and ecological environment, and have received much attention in recent years. Despite the successful applications of catalytic combustion of VOCs as the core technology of VOCs removal in industry, the development of efficient catalysts that can mineralize VOCs into nontoxic CO2 and H2O at low temperatures remains a great challenge. Recent studies show that spinel-based materials as efficient catalysts were extensively used in the catalytic oxidation VOCs field due to their synergistic effect, manifold compositions, and electron configurations. However, most of the pollutants are complex, consisting of multiple VOCs, water vapor, CO2, SO2 and other substances, which presents a significant challenge in constructing highly active and stable catalysts. To meet the future demand for efficient catalysts capable of removing various types of VOCs, it is urgent to rationally design and scientifically prepare spinel catalysts based on existing knowledge. This work reviews the research and development of various spinel catalysts with an emphasis on their catalytic performance in VOCs oxidation. The catalytic performance of spinel-based catalysts for different sorts of VOCs was summarized and compared. Moreover, the effects of the reaction conditions on the catalytic performance of spinel-based catalysts were examined to accommodate complicated operating conditions. Subsequently, the regulation of spinel oxides in structure and defect was coherently reviewed to guide the development and design of efficient catalysts. Especially, the research techniques for the reaction mechanism over spinel catalysts were displayed to better deepen the understanding of catalytic oxidation of VOCs. Finally, the current development and challenges were proposed and put forward for future research. This review provided a systematic understanding of the VOCs oxidation over spinel-based catalysts and offered guidance for the development of high-performance catalysts for VOCs elimination.
Collapse
Affiliation(s)
- Yewei Ren
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Cui Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Ci Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Zhenping Qu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| |
Collapse
|
3
|
Liu Y, Zhang D, Ding J, Hayat K, Yang X, Zhan X, Zhang D, Lu Y, Zhou P. Label-Free and Sensitive Determination of Cadmium Ions Using a Ti-Modified Co 3O 4-Based Electrochemical Aptasensor. BIOSENSORS-BASEL 2020; 10:bios10120195. [PMID: 33266040 PMCID: PMC7761109 DOI: 10.3390/bios10120195] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/26/2020] [Indexed: 01/05/2023]
Abstract
The current work demonstrates an electrochemical aptasensor for sensitive determination of Cd2+ based on the Ti-modified Co3O4 nanoparticles. In this unlabeled system, Ti-modified Co3O4 nanoparticles act as current signal amplifiers modified on the screen-printed carbon electrode (SPCE) surface, while the derivative aptamer of Cd2+ works as a target recognizer. In addition, the sensing is based on the increase in electrochemical probe thionine current signal due to the binding of aptamer to Cd2+ via specific recognition. In the current study, key parameters, including aptamer concentration, pH, and incubation time were optimized, respectively, to ensure sensing performance. Cyclic voltammetry was used not only to characterize each preparation and optimization step, but also to profile the bindings of aptamer to Cd2+. Under optimal conditions, Cd2+ can be determined in a linear range of 0.20 to 15 ng/mL, with a detection limit of 0.49 ng/mL, significantly below the maximum concentration limit set by the U.S. Environmental Protection Agency. Based on comparative analysis and the results of recovery test with real samples, this simple, label-free but highly selective method has considerable potential and thus can be used as an in-situ environmental monitoring platform for Cd2+ testing.
Collapse
Affiliation(s)
- Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongwei Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jina Ding
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xijia Yang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xuejia Zhan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dan Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yitong Lu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Pei Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; (Y.L.); (D.Z.); (J.D.); (K.H.); (X.Y.); (X.Z.); (D.Z.); (Y.L.)
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai 200240, China
- Bor S. Luh Food Safety Research Center, Shanghai Jiao Tong University, Shanghai 200240, China
- Correspondence: ; Tel.: +86-021-34205762
| |
Collapse
|