1
|
Paladugu S, Abdullahi IM, Singh H, Spinuzzi S, Nath M, Page K. Mesoporous RE 0.5Ce 0.5O 2-x Fluorite Electrocatalysts for the Oxygen Evolution Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:7014-7025. [PMID: 38308595 DOI: 10.1021/acsami.3c14977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Developing highly active and stable electrocatalysts for the oxygen evolution reaction (OER) is key to improving the efficiency and practical application of various sustainable energy technologies including water electrolysis, CO2 reduction, and metal air batteries. Here, we use evaporation-induced self-assembly (EISA) to synthesize highly porous fluorite nanocatalysts with a high surface area. In this study, we demonstrate that a 50% rare-earth cation substitution for Ce in the CeO2 fluorite lattice improves the OER activity and stability by introducing oxygen vacancies into the host lattice, which results in a decrease in the adsorption energy of the OH* intermediate in the OER. Among the binary fluorite compositions investigated, Nd2Ce2O7 is shown to display the lowest OER overpotential of 243 mV, achieved at a current density of 10 mA cm-2, and excellent cycling stability in an alkaline medium. Importantly, we demonstrate that rare-earth oxide OER electrocatalysts with high activity and stability can be achieved using the EISA synthesis route without the incorporation of transition and noble metals.
Collapse
Affiliation(s)
- Sreya Paladugu
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Ibrahim Munkaila Abdullahi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Harish Singh
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Sam Spinuzzi
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Manashi Nath
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Katharine Page
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, United States
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
2
|
Yi H, Wang Y, Luo G. Unveiling the mechanism of methylcellulose-templated synthesis of Al 2O 3 microspheres with organic solvents as swelling agents in microchannel. J Colloid Interface Sci 2022; 628:31-42. [PMID: 35908429 DOI: 10.1016/j.jcis.2022.07.131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 07/14/2022] [Accepted: 07/20/2022] [Indexed: 11/29/2022]
Abstract
Herein, we report a systematic investigation of the preparation of large-pore-volume Al2O3 microspheres using a complex synthesis system with methylcellulose (MC) as the template and gelation initiator and organic solvents as the swelling agent and carrier medium under the flow characteristics of a coaxial microchannel. The adsorption of MC micelles on boehmite colloidal nanoparticles (NPs) was proven and determined by interfacial tension measurements, dynamic light scattering, and cryogenic transmission electron microscopy. Isothermal titration calorimetry demonstrated that the adsorption process was caused by nonspecific hydrophobicity; one binding site was involved, and the affinity constant was 1060 M-1. When the MC:NPs mass ratio exceeded 0.1, the template-NP bridged each other to form large aggregates, thereby forming large mesopores and enhancing the gelation speed. Alkanes, alcohols, and amines were applied to further enhance the porosity, and the swelling capacities were investigated experimentally and theoretically. Amines were efficient swelling agents owing to their excellent ability to swell MC micelles and insert into the acid colloid network. The coaxial microchannel was subjected to molding; this process significantly influenced the morphology and textural properties owing to the internal circulation during droplet formation. When trihexylamine with suitable steric hindrance, alkalinity, and polarity was used as the swelling agent, the microspheres exhibited an optimal specific surface area of 403 m2/g and a pore volume of 1.85 cm3/g.
Collapse
Affiliation(s)
- Huilin Yi
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yujun Wang
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China.
| | - Guangsheng Luo
- State Key Lab of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
3
|
Vainrot N, Li M, Isloor AM, Eisen MS. New Preparation Methods for Pore Formation on Polysulfone Membranes. MEMBRANES 2021; 11:membranes11040292. [PMID: 33919598 PMCID: PMC8073563 DOI: 10.3390/membranes11040292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/29/2021] [Accepted: 04/14/2021] [Indexed: 11/16/2022]
Abstract
This work described the preparation of membranes based on aromatic polysulfones through the phase-inversion method induced by a nonsolvent, generating the phase separation (NIPS) process. Three new techniques, including the nano iron acid etching method, base hydrolysis method of crosslinked polymers, and base hydrolysis method of a reactive component in a binary polymer blend, were developed for pore creation on membranes. The modified polymers and obtained membranes were carefully characterized. The uniform pores were successfully created by base hydrolysis of the crosslinked polymers and obtained at the size of the crosslinker. Moreover, homogeneous pores were created after base hydrolysis of the membranes prepared from binary polymer blends due to the internal changes in the polymer structure. The separation performance of membranes was tested with different inorganic salt solutions and compared with commercially known membranes. These new membranes exhibited high water flux (up to 3000 L/m-2·h-1 at 10 bar and at 25 °C) and reasonable rejections for monovalent (21-44%) and multivalent ions (18-60%), depending on the different etching of the hydrolysis times. The comparison of these membranes with commercial ones confirmed their good separation performance and high potential application for water treatment applications.
Collapse
Affiliation(s)
- Natalia Vainrot
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel; (N.V.); (A.M.I.)
| | - Mingyuan Li
- Department of Chemistry, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China;
| | - Arun M. Isloor
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel; (N.V.); (A.M.I.)
- Membrane and Separation Technology Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575 025, India
| | - Moris S. Eisen
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel; (N.V.); (A.M.I.)
- Department of Chemistry, Guangdong Technion-Israel Institute of Technology, Shantou 515063, China;
- Correspondence:
| |
Collapse
|
4
|
Bastakoti BP, Kuila D, Salomon C, Konarova M, Eguchi M, Na J, Yamauchi Y. Metal-incorporated mesoporous oxides: Synthesis and applications. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123348. [PMID: 32763679 DOI: 10.1016/j.jhazmat.2020.123348] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
Mesoporous oxides are outstanding metal nanoparticle catalyst supports owing to their well-defined porous structures. Such mesoporous architectures not only prevent the aggregation of metal nanoparticles but also enhance their catalytic performance. Metal/metal oxide heterojunctions exhibit unique chemical and physical properties because of the surface reconstruction around the junction and electron transfer/interaction across the interface. This article reviews the methods used for synthesizing metal-supported hybrid nanostructures and their applications as catalysts for environmental remediation and sensors for detecting hazardous materials.
Collapse
Affiliation(s)
- Bishnu Prasad Bastakoti
- Department of Chemistry, Applied Sciences & Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA.
| | - Debasish Kuila
- Department of Chemistry, Applied Sciences & Technology, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Brisbane, Queensland, Australia
| | - Muxina Konarova
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Miharu Eguchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia; International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Jongbeom Na
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia; International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia; International Research Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia; Department of Plant and Environmental New Resources, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si, Gyeonggi-do 446-701, South Korea
| |
Collapse
|
5
|
Gonçalves AAS, Ciesielczyk F, Samojeden B, Jaroniec M. Toward development of single-atom ceramic catalysts for selective catalytic reduction of NO with NH 3. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123413. [PMID: 32763703 DOI: 10.1016/j.jhazmat.2020.123413] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 06/21/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
Insertion of transition metal species into crystalline alumina at low temperatures is proposed to achieve the dispersion of these species at atomic level paired with exceptional textural properties. Precisely, MeAl2O4/γ-Al2O3 (Me = Mn, Fe, Co, Ni, and/or Cu) nanostructured ceramic catalysts were fabricated with ultra large mesopores (16-30 nm), and high specific surface area (180-290 m2 g-1) and pore volume (1.1-1.6 cm3 g-1). These ceramics were applied as efficient catalysts for the selective catalytic reduction (SCR) of NO with NH3, and their selectivity was discussed in terms of N2O formation, an undesirable byproduct. The catalysts containing Fe, Cu, or Mn showed the highest activities, however, within different temperature ranges. Further tuning of the catalytic activity and selectivity was achieved by creating ceramic catalysts with mixed compositions, e.g., CuFe and MnFe. Upon insertion of the transition metal species into crystalline structure of alumina to maximize atom efficiency, the N2O formation profile did not change significantly for all metal aluminates except MnAl2O4, indicating that these catalysts are suitable for SCR and selectively promote the reduction of NO.
Collapse
Affiliation(s)
- Alexandre A S Gonçalves
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, United States
| | - Filip Ciesielczyk
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, PL-60965 Poznan, Poland
| | - Bogdan Samojeden
- Faculty of Energy and Fuels, AGH University of Science and Technology, PL-30059 Krakow, Poland
| | - Mietek Jaroniec
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44240, United States.
| |
Collapse
|
6
|
Kołodziejczak-Radzimska A, Budna A, Ciesielczyk F, Moszyński D, Jesionowski T. Laccase from Trametes versicolor supported onto mesoporous Al2O3: Stability tests and evaluations of catalytic activity. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
7
|
Ismail N, Venault A, Mikkola JP, Bouyer D, Drioli E, Tavajohi Hassan Kiadeh N. Investigating the potential of membranes formed by the vapor induced phase separation process. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117601] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|