1
|
Paradossi G, Domenici F, Riccitelli F, Grossman R. Toward a Theranostic Approach for the Brain Tumor Toxicity Profile of Polymer-Shelled Microbubbles. ACS OMEGA 2025; 10:4486-4495. [PMID: 39959058 PMCID: PMC11822525 DOI: 10.1021/acsomega.4c07995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/20/2024] [Accepted: 12/26/2024] [Indexed: 02/18/2025]
Abstract
The establishment of theranostic devices by combining multimodal real-time intraoperative imaging for brain tumor surgery with targeted drug delivery may provide therapeutic advantages for patients with malignant gliomas. Our group has recently developed a new generation of novel microbubbles (MBs), with an air core and a crosslinked poly(vinyl alcohol) shell, called PVA MBs. The PVA MB surface was engineered to support near-infrared (NIR) imaging with a fluorescence probe (C790) for the surgical microscope. The attachment to a cyclic pentapeptide containing the RGD sequence promotes active adhesion and direct targeting of endothelial tumor integrins. The conjugation of temozolomide (TMZ), an alkylating chemotherapy proven to be effective against malignant gliomas, provides a unique therapeutic advantage. The potential toxicity of this novel technology was assessed in rats by intravenous injections of two doses of naked MBs and MBs equipped with RGD for targeting tumor integrins, NIR fluorescence (CF790) for real-time visualization, and TMZ as a cytotoxic component, at two time points, 10 min and 7 days, for potential acute and chronic responses in rats [(1) MB, (2) MB-C790-RGD, and (3) MB-C790-RGD-TMZ]. No mortality occurred during the 7-day study period in any of the dosing groups. Decreased hemoglobin and hematocrit levels and increased triglyceride levels were noticed in the high-dose naked MBs and MBs-CF790-RGD groups. These findings may be associated with their enlarged spleen and liver, observed during necropsy. Histopathology examination in the high-dose animals showed the development of treatment-related changes seen mostly 7 days post dosing, consisting of granulomatous inflammation and foreign body reaction. Accordingly, we concluded that the low-dose tested items appeared to be safe. The results allow us to proceed with planning for an efficacy study before making the first attempt to use this technology in clinical practice.
Collapse
Affiliation(s)
- Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Fabio Domenici
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Francesco Riccitelli
- Dipartimento di Scienze e Tecnologie Chimiche, Università degli Studi di Roma Tor Vergata, 00133 Roma, Italy
| | - Rachel Grossman
- Brain
Tumor Center, Department of Neurosurgery, Rappaport Faculty of Medicine, Technion—Israel Institute of
Technology, Rambam Health Care Campus, Haifa 32000, Israel
| |
Collapse
|
2
|
Riaz R, Shafiq S, Fatima M, Siddique MA, Shah S, Abbas SR. Contrast efficacy of novel phase convertible nanodroplets for safe CEUS imaging. Sci Rep 2024; 14:16126. [PMID: 38997313 PMCID: PMC11245480 DOI: 10.1038/s41598-024-66163-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
Microbubble contrast agents in ultrasound/echocardiography are used to increase the echogenicity of the target tissues, thereby raising the contrast resolution of the resultant image. Recently, the trend has shifted toward the development of phase-convertible nanodroplets as ultrasound contrast agents due to their promising theragnostic potential by switching capability at the active site. Herein, we fabricated pre-PGS- perfluoropentane phase convertible nanodroplets and checked their in vitro and in vivo enhancement and safety profile. For this, we performed experiments on 20 male Wistar rats and 2 dogs. Biochemical assays of both rats and dogs included complete blood profiles, liver function tests, and renal function tests. For rat vitals, monitoring and histopathological analysis were also performed. Converted nanodroplets showed excellent contrast enhancement, better than Sonovue upon in vitro testing, with an enhancement time of up to 14 min. In vivo, experiments showed comparable opacification of the ventricles of both rats and dogs. All biochemical assays remained within the normal range during the study period. The histopathological analysis did not show any signs of drug-induced toxicity, showing the safety of these nanodroplets. Pre-PGS-PFP nanodroplets hold great potential for use in echocardiography and abdominal imaging in both human and veterinary applications after clinical trials.
Collapse
Affiliation(s)
- R Riaz
- Department of Microbiology and Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Medical Imaging Technology, FRAHS, Riphah International University, Islamabad, Pakistan
- Biosensors and Therapeutics Lab, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - S Shafiq
- Department of Microbiology and Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - M Fatima
- Department of Microbiology and Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
- Biosensors and Therapeutics Lab, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - M A Siddique
- Faculty of Veterinary & Animal Sciences, PMAS UAAR; Maaz Pet Hospital, Rawalpindi, Pakistan
| | - S Shah
- Shifa International Hospital, Islamabad, Pakistan
| | - S R Abbas
- Department of Microbiology and Industrial Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
- Biosensors and Therapeutics Lab, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan.
| |
Collapse
|
3
|
Gusliakova OI, Kurochkin MA, Barmin RA, Prikhozhdenko ES, Estifeeva TM, Rudakovskaya PG, Sindeeva OA, Galushka VV, Vavaev ES, Komlev AS, Lyubin EV, Fedyanin AA, Dey KK, Gorin DA. Magnetically navigated microbubbles coated with albumin/polyarginine and superparamagnetic iron oxide nanoparticles. BIOMATERIALS ADVANCES 2024; 158:213759. [PMID: 38227987 DOI: 10.1016/j.bioadv.2024.213759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/31/2023] [Accepted: 01/01/2024] [Indexed: 01/18/2024]
Abstract
While microbubbles (MB) are routinely used for ultrasound (US) imaging, magnetic MB are increasingly explored as they can be guided to specific sites of interest by applied magnetic field gradient. This requires the MB shell composition tuning to prolong MB stability and provide functionalization capabilities with magnetic nanoparticles. Hence, we developed air-filled MB stabilized by a protein-polymer complex of bovine serum albumin (BSA) and poly-L-arginine (pArg) of different molecular weights, showing that pArg of moderate molecular weight distribution (15-70 kDa) enabled MB with greater stability and acoustic response while preserving MB narrow diameters and the relative viability of THP-1 cells after 48 h of incubation. After MB functionalization with superparamagnetic iron oxide nanoparticles (SPION), magnetic moment values provided by single MB confirmed the sufficient SPION deposition onto BSA + pArg MB shells. During MB magnetic navigation in a blood vessel mimicking phantom with magnetic tweezers and in a Petri dish with adherent mouse renal carcinoma cell line, we demonstrated the effectiveness of magnetic MB localization in the desired area by magnetic field gradient. Magnetic MB co-localization with cells was further exploited for effective doxorubicin delivery with drug-loaded MB. Taken together, these findings open new avenues in control over albumin MB properties and magnetic navigation of SPION-loaded MB, which can envisage their applications in diagnostic and therapeutic needs.
Collapse
Affiliation(s)
- Olga I Gusliakova
- Science Medical Center, Saratov State University, Saratov 410012, Russia; Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| | - Maxim A Kurochkin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Roman A Barmin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | | | - Tatyana M Estifeeva
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Polina G Rudakovskaya
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga A Sindeeva
- Vladimir Zelman Center for Neurobiology and Brain Rehabilitation, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Victor V Galushka
- Education and Research Institute of Nanostructures and Biosystems, Saratov State University, Saratov 410012, Russia
| | - Evgeny S Vavaev
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Aleksei S Komlev
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Evgeny V Lyubin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey A Fedyanin
- Faculty of Physics, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Krishna Kanti Dey
- Department of Physics, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382055, India
| | - Dmitry A Gorin
- Center for Photonic Science and Engineering, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.
| |
Collapse
|
4
|
Mondal J, Wu Y, Mishra A, Akbaridoust F, Marusic I, Ghosh P, Ashokkumar M. Bubble oscillations at low frequency ultrasound for biological applications. ULTRASONICS SONOCHEMISTRY 2024; 104:106816. [PMID: 38433032 PMCID: PMC11639710 DOI: 10.1016/j.ultsonch.2024.106816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 01/23/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024]
Abstract
Bubbles oscillating in the presence of ultrasound is commonly employed in biomedical applications for drug delivery, ultrasound enhanced thrombolysis, and the transport and manipulation of cells. This is possible because bubbles tend to interact with the ultrasound to undergo periodic shape changes known as shape-mode oscillation, concomitant with the generation of liquid agitation or streaming. This phenomenon is examined both experimentally and theoretically on a single bubble at a frequency of (45 ± 1) kHz. Effects of ultrasonic frequency and power on the flowfield were explored. Experiments revealed different trends in the development of liquid streaming velocities at different acoustic forcing conditions (5.53, 6.80 and 7.02 Vpp), with lowest (0.5 mm/s) and highest (1.1 mm/s) values of time-averaged mean streaming velocity occurring at 6.80 Vpp and 7.02 Vpp, respectively. Simulations captured the simultaneous evolution of bubble-shapes that helped create flow vortices in the liquid surrounding the bubble. These vortices collectively responsible in generating signature patterns in the liquid for a dominant shape-mode of the bubble, and could also generate localised shear stresses for practical application. The velocity and pressure profiles in the liquid around the bubble confirmed the connection of the applied and reflected soundwaves in driving this phenomenon.
Collapse
Affiliation(s)
- Joydip Mondal
- School of Chemistry, University of Melbourne, VIC 3010, Australia; Cryogenic Engineering Centre, IIT Khargapur, Kharagpur 721302, India
| | - Yue Wu
- School of Chemistry, University of Melbourne, VIC 3010, Australia; College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - Arpit Mishra
- Mechanical Engineering and Materials Science at Duke University, Durham, NC27708, USA
| | - Farzan Akbaridoust
- Mechanical Engineering Department, University of Melbourne, VIC 3010, Australia
| | - Ivan Marusic
- Mechanical Engineering Department, University of Melbourne, VIC 3010, Australia
| | | | | |
Collapse
|
5
|
Severini L, D'Andrea A, Redi M, Dabagov SB, Guglielmotti V, Hampai D, Micheli L, Cancelliere R, Domenici F, Mazzuca C, Paradossi G, Palleschi A. Ultrasound-Stimulated PVA Microbubbles as a Green and Handy Tool for the Cleaning of Cellulose-Based Materials. Gels 2023; 9:509. [PMID: 37504388 PMCID: PMC10379172 DOI: 10.3390/gels9070509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/29/2023] Open
Abstract
One of the main issues in the cultural heritage field of restoration chemistry is the identification of greener and more effective methods for the wet cleaning of paper artefacts, which serve as witnesses to human history and custodians of cultural values. In this context, we propose a biocompatible method to perform wet cleaning on paper based on the use of 1 MHz ultrasound in combination with water-dispersed polyvinyl alcohol microbubbles (PVAMBs), followed by dabbing with PVA-based hydrogel. This method can be applied to both old and new papers. FTIR spectroscopy, X-ray diffraction, HPLC analysis, pH measurements and tensile tests were performed on paper samples, to assess the efficacy of the cleaning system. According to the results, ultrasound-activated PVAMB application allows for an efficient interaction with rough and porous cellulose paper profiles, promoting the removal of cellulose degradation byproducts, while the following hydrogel dabbing treatment guarantees the removal of cleaning materials residues. Moreover, the results also pointed out that after the treatment no thermal or mechanical damages had affected the paper. In conclusion, the readability of these kinds of artifacts can be improved without causing an alteration of their structural properties, while mitigating the risk of ink diffusion.
Collapse
Affiliation(s)
- Leonardo Severini
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Alessia D'Andrea
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Martina Redi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sultan B Dabagov
- INFN-LNF, XLab Frascati, Via Enrico Fermi 54, 00044 Rome, Italy
- RAS P.N. Lebedev Physical Institute, Leninsky pr 53, 119991 Moscow, Russia
- National Research Nuclear University MEPhI, Kashirskoe Sh. 31, 115409 Moscow, Russia
| | | | - Dariush Hampai
- INFN-LNF, XLab Frascati, Via Enrico Fermi 54, 00044 Rome, Italy
| | - Laura Micheli
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Rocco Cancelliere
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabio Domenici
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Claudia Mazzuca
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Antonio Palleschi
- Department of Chemical Science and Technologies, University of Rome "Tor Vergata", Via Della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
6
|
Paradossi G, Grossman R, Riccitelli F, Todaro F, Ram Z, Schioppa S, Domenici F. Toward a theranostic device for gliomas. Biochem Biophys Res Commun 2023; 671:124-131. [PMID: 37300942 DOI: 10.1016/j.bbrc.2023.05.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND In the surgical management of glioblastoma, a highly aggressive and incurable type of brain cancer, identification and treatment of residual tissue is the most common site of disease recurrence. Monitoring and localized treatment are achieved with engineered microbubbles (MBs) by combining ultrasound and fluorescence imaging with actively targeted temozolomide (TMZ) delivery. METHODS The MBs were conjugated with a near-infrared fluorescence probe CF790, cyclic pentapeptide bearing the RGD sequence and a carboxyl-temozolomide, TMZA. The efficiency of adhesion to HUVEC cells was assessed in vitro in realistic physiological conditions of shear rate and vascular dimensions. Cytotoxicity of TMZA-loaded MBs on U87 MG cells and IC50 were assessed by MTT tests. RESULTS We report on the design of injectable poly(vinyl alcohol) echogenic MBs designed as a platform with active targeting ability to tumor tissues, by tethering on the surface a ligand having the tripeptide sequence, RGD. The biorecognition of RGD-MBs onto HUVEC cells is quantitatively proved. Efficient NIR emission from the CF790-decorated MBs was successfully detected. The conjugation on the MBs surface of a specific drug as TMZ is achieved. The pharmacological activity of the coupled-to-surface drug is preserved by controlling the reaction conditions. CONCLUSIONS We present an improved formulation of PVA-MBs to achieve a multifunctional device with adhesion ability, cytotoxicity on glioblastoma cells and supporting imaging.
Collapse
Affiliation(s)
- Gaio Paradossi
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy.
| | - Rachel Grossman
- Department of Neurosurgery, Tel Aviv Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Francesco Riccitelli
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Federica Todaro
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Zvi Ram
- Department of Neurosurgery, Tel Aviv Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Sara Schioppa
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy
| | - Fabio Domenici
- Department of Chemical Sciences and Technologies, University of Rome "Tor Vergata", 00133, Rome, Italy
| |
Collapse
|
7
|
Zhang X, Zheng Q, Chen W, Chen Z, Chen Y, Fan Q, Li H, Liu H, Zhu S. Nanoarchitectonics of RGO-Wrapped CNF/GO Aerogels with Controlled Pore Structures by PVA-Assisted Freeze-Casting Approach for Efficient Sound and Microwave Absorption. Chemistry 2023; 29:e202202714. [PMID: 36168665 DOI: 10.1002/chem.202202714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Indexed: 01/11/2023]
Abstract
Acoustic absorption materials play an important role in eliminating the negative effects of noise. Herein, a polyvinyl alcohol (PVA)-assisted freeze-casting was developed for controllably fabricating reduced graphene oxide wrapped carbon nanofiber (RGO@CNF)/graphene oxide composite aerogel. During the freeze-casting, PVA was used as an icing inhibitor to control the size of ice crystals. While the concentration of PVA increased from 0 to 15 mg ⋅ ml-1 , the average pore size of the aerogel was reduced from 154 to 45 μm. Due to the modulation of the pore size and composition, the propagation path and friction loss for sound were optimized, especially at low frequency. For instance, the normalized sound absorption coefficient of RGO@CNF/GO-10 achieves 0.79 (250-6300 Hz). The sample also exhibits a desirable microwave absorbing property whose maximum reflection loss is -47.3 dB (9.44 GHz, d=3.0 mm). Prospectively, this synthetic strategy can be extended to develop other forms of elastic aerogel with a controlled pore size.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qitan Zheng
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wenzheng Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhixin Chen
- School of Mechanical, Materials, Mechatronics and Biomedical Engineering, University of Wollongong, Wollongong, 2522, Australia
| | - Yujie Chen
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qunfu Fan
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Hua Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Hezhou Liu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Shenmin Zhu
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
8
|
Da Ros V, Oddo L, Toumia Y, Guida E, Minosse S, Strigari L, Strolin S, Paolani G, Di Giuliano F, Floris R, Garaci F, Dolci S, Paradossi G, Domenici F. PVA-Microbubbles as a Radioembolization Platform: Formulation and the In Vitro Proof of Concept. Pharmaceutics 2023; 15:pharmaceutics15010217. [PMID: 36678846 PMCID: PMC9862136 DOI: 10.3390/pharmaceutics15010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/04/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
This proof-of-concept study lays the foundations for the development of a delivery strategy for radioactive lanthanides, such as Yttrium-90, against recurrent glioblastoma. Our appealing hypothesis is that by taking advantage of the combination of biocompatible polyvinyl alcohol (PVA) microbubbles (MBs) and endovascular radiopharmaceutical infusion, a minimally invasive selective radioembolization can be achieved, which can lead to personalized treatments limiting off-target toxicities for the normal brain. The results show the successful formulation strategy that turns the ultrasound contrast PVA-shelled microbubbles into a microdevice, exhibiting good loading efficiency of Yttrium cargo by complexation with a bifunctional chelator. The selective targeting of Yttrium-loaded MBs on the glioblastoma-associated tumor endothelial cells can be unlocked by the biorecognition between the overexpressed αVβ3 integrin and the ligand Cyclo(Arg-Gly-Asp-D-Phe-Lys) at the PVA microbubble surface. Hence, we show the suitability of PVA MBs as selective Y-microdevices for in situ injection via the smallest (i.e., 1.2F) neurointerventional microcatheter available on the market and the accumulation of PVA MBs on the HUVEC cell line model of integrin overexpression, thereby providing ~6 × 10-15 moles of Y90 per HUVEC cell. We further discuss the potential impact of using such versatile PVA MBs as a new therapeutic chance for treating glioblastoma multiforme recurrence.
Collapse
Affiliation(s)
- Valerio Da Ros
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Letizia Oddo
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Yosra Toumia
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Eugenia Guida
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Silvia Minosse
- UOC Diagnostica per Immagini, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Silvia Strolin
- Department of Medical Physics, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Giulia Paolani
- Department of Medical Physics, IRCCS Azienda Ospedaliero—Universitaria di Bologna, 40138 Bologna, Italy
| | - Francesca Di Giuliano
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Roberto Floris
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Francesco Garaci
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Susanna Dolci
- Department of Biomedicine and Prevention, University Hospital of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Gaio Paradossi
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Fabio Domenici
- Department of Chemical Science and Technologies, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
9
|
Novel Magnetic Elastic Phase-Change Nanodroplets as Dual Mode Contrast Agent for Ultrasound and Magnetic Resonance Imaging. Polymers (Basel) 2022; 14:polym14142915. [PMID: 35890691 PMCID: PMC9318938 DOI: 10.3390/polym14142915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
Recently, dual-mode imaging systems merging magnetic resonance imaging (MRI) and ultrasound (US) have been developed. Designing a dual-mode contrast agent is complex due to different mechanisms of enhancement. Herein, we describe novel phase change nanodroplets (PCNDs) with perfluoropentane encapsulated in a pre-polyglycerol sebacate (pre-PGS) shell loaded with polyethylene glycol (PEG)-coated iron oxide nanoparticles as having a dual-mode contrast agent effect. Iron oxide nanoparticles were prepared via the chemical co-precipitation method and PCNDs were prepared via the solvent displacement technique. PCNDs showed excellent enhancement in the in vitro US much more than Sonovue® microbubbles. Furthermore, they caused a susceptibility effect resulting in a reduction of signal intensity on MRI. An increase in the concentration of nanoparticles caused an increase in the MR contrast effect but a reduction in US intensity. The concentration of nanoparticles in a shell of PCNDs was optimized to obtain a dual-mode contrast effect. Biocompatibility, hemocompatibility, and immunogenicity assays showed that PCNDs were safe and non-immunogenic. Another finding was the dual-mode potential of unloaded PCNDs as T1 MR and US contrast agents. Results suggest the excellent potential of these PCNDs for use as dual-mode contrast agents for both MRI and US.
Collapse
|
10
|
Improved hybrid-shelled perfluorocarbon microdroplets as ultrasound- and laser-activated phase-change platform. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128522] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
11
|
Riaz R, Abbas SR, Iqbal M. Synthesis, rheological characterization, and proposed application of pre‐polyglycerol sebacate as ultrasound contrast agent based on theoretical estimation. J Appl Polym Sci 2022. [DOI: 10.1002/app.51963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ramish Riaz
- Department of Industrial Biotechnology Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | - Shah Rukh Abbas
- Department of Industrial Biotechnology Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST) Islamabad Pakistan
| | | |
Collapse
|
12
|
Ultrasound contrast agents: microbubbles made simple for the pediatric radiologist. Pediatr Radiol 2021; 51:2117-2127. [PMID: 34117892 PMCID: PMC9288183 DOI: 10.1007/s00247-021-05080-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 02/25/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
The ability to provide prompt, real-time, easily accessible and radiation-free diagnostic assessments makes ultrasound (US) one of the most versatile imaging modalities. The introduction and development of stable microbubble-based ultrasound contrast agents (UCAs) in the early 1990s improved visualization of complex vascular structures, overcoming some of the limitations of B-mode and Doppler imaging. UCAs have been used extensively in the adult population to visualize vasculature and to evaluate perfusion and blood flow dynamics in organs and lesions. Since the first observations that air bubbles within a liquid can generate a strong echogenic effect, to the early makeshift approaches with agitated saline, and later to the development of industrially produced and federally approved UCAs, these agents have evolved to become both clinically and commercially viable. Perhaps the most exciting potential of UCAs is being uncovered by current research that explores the use of these agents for molecular imaging and therapeutic applications. As contrast-enhanced ultrasound (CEUS) becomes more widely available, it is important for pediatric radiologists to understand the physics of the interaction between the US signal and the microbubbles in order to properly utilize them for the highest level of diagnostic imaging and interventions. In this article we introduce the composition of UCAs and the physics of their behavior in US, and we offer a brief history of their development over the last decades.
Collapse
|
13
|
Toumia Y, Miceli R, Domenici F, Heymans SV, Carlier B, Cociorb M, Oddo L, Rossi P, D'Angellilo RM, Sterpin E, D'Agostino E, Van Den Abeele K, D'hooge J, Paradossi G. Ultrasound-assisted investigation of photon triggered vaporization of poly(vinylalcohol) phase-change nanodroplets: A preliminary concept study with dosimetry perspective. Phys Med 2021; 89:232-242. [PMID: 34425514 DOI: 10.1016/j.ejmp.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 06/08/2021] [Accepted: 08/10/2021] [Indexed: 01/24/2023] Open
Abstract
PURPOSE We investigate the vaporization of phase-change ultrasound contrast agents using photon radiation for dosimetry perspectives in radiotherapy. METHODS We studied superheated perfluorobutane nanodroplets with a crosslinked poly(vinylalcohol) shell. The nanodroplets' physico-chemical properties, and their acoustic transition have been assessed firstly. Then, poly(vinylalcohol)-perfluorobutane nanodroplets were dispersed in poly(acrylamide) hydrogel phantoms and exposed to a photon beam. We addressed the effect of several parameters influencing the nanodroplets radiation sensitivity (energy/delivered dose/dose rate/temperature). The nanodroplets-vaporization post-photon exposure was evaluated using ultrasound imaging at a low mechanical index. RESULTS Poly(vinylalcohol)-perfluorobutane nanodroplets show a good colloidal stability over four weeks and remain highly stable at temperatures up to 78 °C. Nanodroplets acoustically-triggered phase transition leads to microbubbles with diameters <10 μm and an activation threshold of mechanical index = 0.4, at 7.5 MHz. A small number of vaporization events occur post-photon exposure (6MV/15MV), at doses between 2 and 10 Gy, leading to ultrasound contrast increase up to 60% at RT. The nanodroplets become efficiently sensitive to photons when heated to a temperature of 65 °C (while remaining below the superheat limit temperature) during irradiation. CONCLUSIONS Nanodroplets' core is linked to the degree of superheat in the metastable state and plays a critical role in determining nanodroplet' stability and sensitivity to ionizing radiation, requiring higher or lower linear energy transfer vaporization thresholds. While poly(vinylalcohol)-perfluorobutane nanodroplets could be slightly activated by photons at ambient conditions, a good balance between the degree of superheat and stability will aim at optimizing the design of nanodroplets to reach high sensitivity to photons at physiological conditions.
Collapse
Affiliation(s)
- Yosra Toumia
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy; INFN sez.Roma Tor Vergata, Italy.
| | - Roberto Miceli
- Radiotherapy Unit, Department of Oncology and Hematology, University Hospital Tor Vergata (PTV), University of Rome Tor Vergata, Italy
| | - Fabio Domenici
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy; INFN sez.Roma Tor Vergata, Italy
| | - Sophie V Heymans
- Department of Physics, KU Leuven Campus Kulak, Kortrijk, Belgium; Department of Biomedical Engineering, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Bram Carlier
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Madalina Cociorb
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy; DoseVue, Hasselt, Belgium
| | - Letizia Oddo
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy
| | - Piero Rossi
- Department of Surgical Sciences, PTV, University of Rome Tor Vergata, Italy
| | - Rolando Maria D'Angellilo
- Radiotherapy Unit, Department of Oncology and Hematology, University Hospital Tor Vergata (PTV), University of Rome Tor Vergata, Italy
| | | | | | | | - Jan D'hooge
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium
| | - Gaio Paradossi
- Department of Chemical Science and Technology, University of Rome Tor Vergata, Italy; INFN sez.Roma Tor Vergata, Italy
| |
Collapse
|
14
|
D’Andrea A, Severini L, Domenici F, Dabagov S, Guglielmotti V, Hampai D, Micheli L, Placidi E, Titubante M, Mazzuca C, Paradossi G, Palleschi A. Ultrasound-Stimulated PVA Microbubbles for Adhesive Removal from Cellulose-Based Materials: A Groundbreaking Low-Impact Methodology. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24207-24217. [PMID: 33988378 PMCID: PMC8289177 DOI: 10.1021/acsami.1c01892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
In this work, we shed new light on ultrasound contrast agents applied to the field of cultural heritage as an invaluable fine-tune cleaning tool for paper artworks. In this context, one of the primary and challenging issues is the removal of modern adhesives from paper artifacts. Modern adhesives are synthetic polymers whose presence enhances paper degradation and worsens its optical features. A thorough analytical and high-spatial-resolution combined study was successfully performed to test the capability of poly(vinyl alcohol)-based microbubbles stimulated by a proper noninvasive 1 MHz ultrasound field exposure in removing these adhesives from paper surfaces, in the absence of volatile invasive and toxic chemicals and without damaging paper and/or leaving residues. We demonstrate that poly(vinyl alcohol)-shelled microbubbles are suitable for interacting with paper surfaces, targeting and boosting in a few minutes the nondamaging removal of adhesive particles from paper samples thanks to their peculiar shell composition together with their ultrasound dynamics.
Collapse
Affiliation(s)
- Alessia D’Andrea
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Leonardo Severini
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Fabio Domenici
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Sultan Dabagov
- INFN-LNF, XLab Frascati
Via Enrico Fermi 54, 00044 Frascati (RM), Italy
- RAS
P.N. Lebedev Physical Institute, Leninsky pr 53, 119991 Moscow, Russia
- National
Research Nuclear University MEPhI, Kashirskoe Sh. 31, 115409 Moscow, Russia
| | - Valeria Guglielmotti
- INFN-LNF, XLab Frascati
Via Enrico Fermi 54, 00044 Frascati (RM), Italy
- University
Guglielmo Marconi, Via
Plinio 44, 00193 Rome, Italy
| | - Dariush Hampai
- INFN-LNF, XLab Frascati
Via Enrico Fermi 54, 00044 Frascati (RM), Italy
| | - Laura Micheli
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Ernesto Placidi
- Department
of Physics, Sapienza University of Rome, P.le Aldo Moro 2, 00185 Rome, Italy
| | - Mattia Titubante
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Claudia Mazzuca
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Gaio Paradossi
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| | - Antonio Palleschi
- Department
of Chemical Science and Technologies, University
of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
15
|
Chen H, Evangelou D, Loskutova K, Ghorbani M, Grishenkov D. On the Development of a Novel Contrast Pulse Sequence for Polymer-Shelled Microbubbles. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2021; 68:1569-1579. [PMID: 33245694 DOI: 10.1109/tuffc.2020.3041206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Contrast agents are routinely used in ultrasound examinations. Nonlinear ultrasound imaging techniques have been developed over decades to enhance the contrast between the tissue and the blood pool after the injection of ultrasound contrast agents (UCAs). In this study, we introduce a new contrast pulse sequence, CPS4. The CPS4 combines pulse inversion (PI), subharmonic (SH), and ultraharmonic (UH) techniques to remove propagation distortion while capturing the unique SH and UH responses from UCAs. The novel CPS4 and conventional PI, SH, and UH techniques were used to detect the presence of a research-grade, thick-shell, polymer microbubble in a tissue-mimicking flow phantom. The contrast-to-tissue ratios (CTRs) obtained from the applications of all techniques were compared. The results show that the highest CTR of approximately 16 dB was obtained using CPS4, which was superior to the individual reference techniques: PI, SH, and UH techniques, in all scenarios considered in this study.
Collapse
|
16
|
Microgel Particles with Distinct Morphologies and Common Chemical Compositions: a Unified Description of the Responsivity to Temperature and Osmotic Stress. Gels 2020; 6:gels6040034. [PMID: 33081416 PMCID: PMC7709680 DOI: 10.3390/gels6040034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 11/30/2022] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAM) hydrogel microparticles with different core–shell morphologies have been designed, while maintaining an unvaried chemical composition: a morphology with (i) an un-crosslinked core with a crosslinked shell of PNIPAM chains and (ii) PNIPAM chains crosslinked to form the core with a shell consisting of tethered un-crosslinked PNIPAM chains to the core. Both morphologies with two different degrees of crosslinking have been assessed by confocal microscopy and tested with respect to their temperature responsivity and deformation by applying an osmotic stress. The thermal and mechanical behavior of these architectures have been framed within a Flory–Rehner modified model in order to describe the microgel volume shrinking occurring as response to a temperature increase or an osmotic perturbation. This study provides a background for assessing to what extent the mechanical features of the microgel particle surface affect the interactions occurring at the interface of a microgel particle with a cell, in addition to the already know ligand/receptor interaction. These results have direct implications in triggering a limited phagocytosis of microdevices designed as injectable drug delivery systems.
Collapse
|
17
|
Shafi AS, McClements J, Albaijan I, Abou-Saleh RH, Moran C, Koutsos V. Probing phospholipid microbubbles by atomic force microscopy to quantify bubble mechanics and nanostructural shell properties. Colloids Surf B Biointerfaces 2019; 181:506-515. [DOI: 10.1016/j.colsurfb.2019.04.062] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 04/05/2019] [Accepted: 04/29/2019] [Indexed: 12/17/2022]
|