1
|
Jia Y, Han B, Liu XT, Liu Y, Sun Y, Lu C. A highly water-soluble hydrogen-bond-induced emission carbon dots for ratiometric fluorescent detection of water content in organic solvents. Talanta 2024; 270:125567. [PMID: 38171237 DOI: 10.1016/j.talanta.2023.125567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 01/05/2024]
Abstract
Water in organic solvents is a prevalent impurity that significantly influences chemical reactions and industrial processes. Carbon dots (CDs) gained attention as promising tools for chemosensing due to their advantageous characteristics, including easy synthesis, cost-effectiveness, and excellent adjustability and stability. However, limited solubility in water and turn off fluorescence response mode hinder the practical utilization of CDs for water sensing. To tackle such dilemma, a highly water-soluble CDs with distinctive hydrogen-bond-induced emission (HBIE) was rationally designed through introducing sulfone group into the widely employed p-phenylenediamine precursor. The inclusion of sulfone group imparts the CDs with notable water solubility, as well as distinctive ratiometric fluorescent response towards water content, exhibiting high sensitivity and selectivity. Upon exposure to water, the emission color of CDs undergoes a real-time transition from blue to yellow-green, which can be readily discerned by naked eyes. The CDs have been successfully applied in detecting water in commercially available alcohol. This study presents a straightforward yet efficacious approach for rationally design of CDs with unique HBIE characteristics and ratiometric fluorescent response, offering great potential for practical chemosensing applications.
Collapse
Affiliation(s)
- Yanfei Jia
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Bing Han
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiao-Ting Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Yuhao Liu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Yuanqiang Sun
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| | - Chao Lu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China; State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| |
Collapse
|
2
|
Modulation of the binding ability to biomacromolecule, cytotoxicity and cellular imaging property for ionic liquid mediated carbon dots. Colloids Surf B Biointerfaces 2022; 216:112552. [PMID: 35580459 DOI: 10.1016/j.colsurfb.2022.112552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/01/2022] [Accepted: 05/06/2022] [Indexed: 11/22/2022]
Abstract
For the preparation of carbon dots (CDs), a variety of carbon sources and synthetic protocols are available which endow CDs with variable and unpredictable properties. In the present study, three CDs were developed with ionic liquid 1-butyl-3-methylimidazolium dicyanamide as the precursor through ethanol-thermal and hydrothermal strategies, termed as E-CDs and H-CDs, respectively. The features of these carbon dots, i.e., their physicochemical and optical properties, their interactions with bovine serum albumin (BSA) as well as their imaging capability were investigated with respect to the CDs prepared with microwave assisted approach (W-CDs). E-CDs and H-CDs were demonstrated to exhibit similar framework structures and optical properties, and they exhibited larger particle-sizes than that of W-CDs. In addition, the increase of ethanol-thermal and hydrothermal reaction time strengthened the quantum yields of the CDs and promoted their binding capability with BSA. E-CDs and H-CDs showed similar cytotoxicity on normal (LX-2) and cancer (SK-Hep-1) cells. We further found that these CDs may readily enter the cells within 5 min, while the fluorescence of hydrophilic E-CDs and H-CDs was very weak with respect to that of hydrophobic W-CDs in cell imaging. On the other hand, all the CDs exhibited little impact on the level of intracellular reactive oxygen species. The present study is conducive to guide the preparation of suitable carbon dots for different application scenarios.
Collapse
|
3
|
Lisa John V, Joy F, Jose Kollannoor A, Joseph K, Nair Y, T. P. V. Amine functionalized carbon quantum dots from paper precursors for selective binding and fluorescent labelling applications. J Colloid Interface Sci 2022; 617:730-744. [DOI: 10.1016/j.jcis.2022.03.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/16/2022] [Indexed: 01/14/2023]
|
4
|
Wang P, Ji H, Guo S, Zhang Y, Yan Y, Wang K, Xing J, Dong Y. One-pot synthesis of nuclear targeting carbon dots with high photoluminescence. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
5
|
Guo T, Wang X, Shu Y, Wang J. Effects of alkyl side-chain length on binding with bovine serum albumin, cytotoxicity, and antibacterial properties of 1-alkyl-3-methylimidazolium dicyanamide ionic liquids. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Guo T, Wang X, Zhao C, Shu Y, Wang J. Precise regulation of the properties of hydrophobic carbon dots by manipulating the structural features of precursor ionic liquids. Biomater Sci 2021; 9:3127-3135. [PMID: 33710222 DOI: 10.1039/d1bm00090j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
To prepare carbon dots (CDs), there are numerous protocols that use a wide variety of carbon sources, which results in properties of CDs that are unpredictable and highly variable. Therefore, the development of reliable approaches for precisely regulating the nature of CDs is urgently required. Herein, a series of organophilic/hydrophobic CDs (OCDs) were prepared under microwave agitation with ionic liquid 1-alkyl-3-methylimidazolium dicyanamide as the precursor, by varying the alkyl chain linked in the cationic imidazolium moiety. The physicochemical, optical and biological properties, and imaging performance of OCDs were exploited to elucidate the structure-activity relationship, and it was discovered that the alkyl chain plays key roles in governing the properties of OCDs. The increase in the alkyl chain length, from ethyl, butyl, hexyl, and octyl to decyl, led to a remarkable variation in the properties of the OCDs, i.e., a reduction in nitrogen doping from 40.71 to 20.75%, a decrease in binding affinity with bovine serum albumin (BSA), and an increase in cytotoxicity. The interaction of OCDs with BSA and the formation of a 'protein corona' substantially increased the biocompatibility of the OCDs. The OCDs penetrated into MCF-7 human breast cancer cells in 10 min and demonstrated bright fluorescence imaging.
Collapse
Affiliation(s)
- Tingting Guo
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Xiaojuan Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Chenxi Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| | - Jianhua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
7
|
Yang D, Liu C, Piao H, Quan P, Fang L. Enhanced Drug Loading in the Drug-in-Adhesive Transdermal Patch Utilizing a Drug-Ionic Liquid Strategy: Insight into the Role of Ionic Hydrogen Bonding. Mol Pharm 2021; 18:1157-1166. [PMID: 33504154 DOI: 10.1021/acs.molpharmaceut.0c01054] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Though pharmaceutical polymers were widely used in inhibiting drug recrystallization via strong intermolecular hydrogen and ionic bonds, the improved drug stability was achieved at the cost of the drug release rate or amount in the drug-in-adhesive transdermal patch. To overcame the difficulty, this study aimed to increase drug loading utilizing a novel drug-ionic liquid (drug-IL) strategy and illustrate the underlying molecular mechanism. Here, naproxen (NPX) and triamylamine (TAA) were chosen as the model drug and corresponding counterion, respectively. In addiiton, carboxylic pressure-sensitive adhesive (PSA) was chosen as the model polymer. The drug-IL (NPX-TAA) was synthesized and characterized by differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), and proton nuclear magnetic resonance. The miscibility between NPX-TAA and PSA was assessed using microscopy study, X-ray diffraction, fluorescence spectroscopy, and solubility parameter calculation. In addition, molecular mechanisms of crystallization inhibition were revealed by FT-IR, Raman spectroscopy, DSC, X-ray photoelectron spectroscopy (XPS), and molecular docking. Finally, the release pattern of the high load patch of NPX-TAA was evaluated using in vitro drug release and verified by a skin permeation experiment. The results showed that drug loading in PSA was increased by 5.0 times, which was caused by the synergistic effect of strong ionic hydrogen bonding (the decreased intensity and blue shift of the O-H peak of COOH in PSA) formed between NPX-TAA and PSA-COO- and normal hydrogen bonding (red shift of the C═O peak in PSA) formed between NPX-TAA and the carbonyl group of PSA. In addition, -NH+ of TAA was confirmed as the molecular basis of ionic hydrogen bonding through new peak appearance (binding energy: 400.0 eV) in XPS spectra. Moreover, high drug release percent (80.8 ± 1.8%) was achieved even at high drug loading compared with the control group (72.4 ± 2.2%). Thus, this study introduced an effective drug-IL method to enhance drug loading capacity and illustrated the brand-new action mechanism, which provided a powerful instrument for the development of a high drug loading-high release patch.
Collapse
Affiliation(s)
- Degong Yang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Chao Liu
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Huiqing Piao
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Peng Quan
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Liang Fang
- Department of Pharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| |
Collapse
|
8
|
Wu Y, Ren Y, Guo J, Liu Z, Liu L, Yan F. Imidazolium-type ionic liquid-based carbon quantum dot doped gels for information encryption. NANOSCALE 2020; 12:20965-20972. [PMID: 33090171 DOI: 10.1039/d0nr06358d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here, a strategy for the preparation of adjustable imidazolium-type ionic liquid (IL)-based carbon quantum dots (CQDs) was reported. The effect of chemical structure, including carbon chain length of the N-substitution and the type of anion, on the amphiphilicity of CQDs was systematically investigated. It was found that the hydrophobicity of CQDs can be increased with the increase of carbon chain length for substitution at the N3 position. Moreover, the amphiphilicity of CQDs was also switched by changing the hydrophilic anions to hydrophobic anions. Due to adjustable amphiphilicity, the hydrophilic and hydrophobic CQDs were used for the preparation of fluorescent hydrogels and organogels, respectively. The fluorescent CQD-doped gels showed light- and force-dual stimuli responsiveness, which provides more secure information encryption than traditional single encryption inks.
Collapse
Affiliation(s)
- Yiqing Wu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Yongyuan Ren
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Jiangna Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Ziyang Liu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Lili Liu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| | - Feng Yan
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
9
|
Xu J, Dai L, Zhang C, Gui Y, Yuan L, Lei Y, Fan B. Ionic liquid-aided hydrothermal treatment of lignocellulose for the synergistic outputs of carbon dots and enhanced enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2020; 305:123043. [PMID: 32114304 DOI: 10.1016/j.biortech.2020.123043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
How to propel an efficient exploitation of waste streams is a pivotal tache for the long-range augment of hydrothermal biomass valorization. A facile approach was proposed to simultaneously produce carbon dots (CDs), fermentable sugar, and cellulose enzymatic lignin from agricultural straw with the aid of ionic liquid (IL, 1-aminoethyl-3-methylimidazolium nitrate, [C2NH2MIm][NO3]) catalyzed hydrothermal treatment. The graphite N-doped CDs with bright-blue fluorescence, which was mainly derived from the incorporation of hemicellulose (e.g. xylooligosaccharides), lignin and [C2NH2MIm][NO3], exhibited an average-diameter of 8.14 nm. The exfoliation of amorphous parts and robust fibers was formed to improve cellulose digestibility from 14.7 to 81.6%. The efficient recovery and checkup of lignin pave a way for its potential depolymerization into arenes. This protocol offers a significant benefit for large-scale hydrothermal biorefinery where reduction of process waste is a prime concern, and leads to high-value products (i.e., CDs and lignin) that also fosters the feasibility of bioethanol.
Collapse
Affiliation(s)
- Jikun Xu
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China; School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lin Dai
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chuntao Zhang
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Gui
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Lan Yuan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yang Lei
- Center for Energy Resources Engineering, Department of Chemistry, Technical University of Denmark, Lyngby 2800, Denmark
| | - Baoan Fan
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|