1
|
Li S, Cheng Y, Zhu H, Xu M, Lv H, Wang Z, Liu G, Song H. Strain-Induced Phase Separation and Mechanomodulation of Ionic Conduction in Anisotropic Nanocomposite Ionogels. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38422366 DOI: 10.1021/acsami.3c19167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Ionogels have great potential for the development of tissue-like, soft, and stretchable ionotronics. However, conventional isotropic ionogels suffer from poor mechanical properties, low efficient force transmission, and tardy mechanoelectric response, hindering their practical utility. Here, we propose a simple one-step method to fabricate bioinspired anisotropic nanocomposite ionogels based on a combination of strain-induced phase separation and mechanomodulation of ionic conduction in the presence of attapulgite nanorods. These ionogels show high stretchability (747.1% strain), tensile strength (6.42 MPa), Young's modulus (83.49 MPa), and toughness (18.08 MJ/m3). Importantly, the liquid crystalline domain alignment-induced microphase separation and ionic conductivity enhancement during stretching endow these ionogels with an unusual mechanoelectric response and dual-programmable shape-memory properties. Moreover, the anisotropic structure, good elasticity, and unique resistance-strain responsiveness give the ionogel-based strain sensors high sensitivity, rapid response time, excellent fatigue resistance, and unique waveform-discernible strain sensing, which can be applied to real-time monitoring of human motions. The findings offer a promising way to develop bioinspired anisotropic ionogels to modulate the microstructure and properties for practical applications in advanced ionotronics.
Collapse
Affiliation(s)
- Shuaijie Li
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Yan Cheng
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongnan Zhu
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Min Xu
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Hongying Lv
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Zhuoer Wang
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| | - Guoming Liu
- CAS Key Laboratory of Engineering Plastics, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongzan Song
- College of Chemistry and Materials Science, Hebei University, Baoding, Hebei Province 071002, P. R. China
| |
Collapse
|
2
|
Gao Y, Zhao K, Yu X, Li Z, Wu T, Zhang C, Du F, Hu J. Multiple modulations of supramolecular assemblies from a natural triterpenoid-tailored bipyridinium amphiphile. J Colloid Interface Sci 2021; 584:92-102. [DOI: 10.1016/j.jcis.2020.09.125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/21/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022]
|
3
|
Importance of interfacial and rheological properties in the suppression of uniform deposition to coffee ring pattern of zinc oxide nanofluids in the presence of anionic surfactants. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04646-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|