1
|
Kichatov B, Korshunov A, Sudakov V, Gubernov V, Golubkov A, Kolobov A, Kiverin A, Chikishev L. Motion of magnetic motors across liquid-liquid interface. J Colloid Interface Sci 2023; 652:1456-1466. [PMID: 37659314 DOI: 10.1016/j.jcis.2023.08.138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/01/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
HYPOTHESIS In a number of applications related to chemical engineering and drug delivery, magnetic nanoparticles should move through a liquid-liquid interface in the presence of surfactant molecules. However, due to the action of capillary forces, this is not always possible. The mechanism of particle motion through the interface essentially depends on the intensity of the Marangoni flow, which is induced on the interface during its deformation. EXPERIMENTS In this paper we study the motion of nanoparticles Fe3O4 through the water-tridecane interface under the action of a nonuniform magnetic field when using different surfactants. FINDINGS If the linear size of the magnetic motor turns out to be less than a certain critical value, then it is not able to move between phases due to the action of capillary forces on the interface. Depending on the type and concentration of the surfactant used, various mechanisms for the motor motion through the liquid-liquid interface can be carried out. In one of them, a liquid phase is transferred through the interface along with a movable motor, while in the other, it is not.
Collapse
Affiliation(s)
- Boris Kichatov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alexey Korshunov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Sudakov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir Gubernov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexandr Golubkov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Andrey Kolobov
- Lebedev Physical Institute, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexey Kiverin
- Joint Institute for High Temperatures, Russian Academy of Sciences, 125412 Moscow, Russia
| | - Leonid Chikishev
- Kutateladze Institute of Thermophysics, Russian Academy of Sciences, 630090 Novosibirsk, Russia
| |
Collapse
|
2
|
Song Y, Yu W, Liu Z, Huang Y, Li M, Li D. Electrokinetic transportation and differentiation of copper and aluminum particles in oil with an oil-water interface. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Li M, Li D, Song Y, Li D. Tunable particle/cell separation across aqueous two-phase system interface by electric pulse in microfluidics. J Colloid Interface Sci 2022; 612:23-34. [PMID: 34974255 DOI: 10.1016/j.jcis.2021.12.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/21/2021] [Indexed: 01/16/2023]
Abstract
HYPOTHESIS Separations of particles and cells are indispensable in many microfluidic systems and have numerous applications in chemistry and biomedicine. The interface of aqueous two-phase system (ATPS) can act as a liquid filter. Under electric field stimuli, the selective transfer of targets across the liquid-liquid interface are expected for particles and cells separation. EXPERIMENTS The separations of particles and cells based on ATPS electrophoresis in a microfluidic chip were investigated. A systematical study of the mechanism of ATPS electrophoresis was performed first by employing polystyrene (PS) particles. Subsequently, the separations of particles and microalgae cells were demonstrated. FINDINGS The electrophoretic transfer of particles across the interface of ATPS is determined by multi-parameters, including the strength of electric pulse, particle size, zeta potential, and hydrophobicity of the particle. The continuous separations of particles/cells can be achieved through the controllable transfer of target particles/cells across the interface under electric pulses in a microfluidic chip. By simply turning the magnitude of the applied electric pulse, the technique is suitable for different purposes, for example, the separations of particles and cells, purification of cells, and viability identification of cells. This tunable separation approach opens opportunities in multidimensional particle and cell sorting for the fields of seed selection of microorganisms, environmental assessment, and biomedical research.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Deyu Li
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1.
| |
Collapse
|
4
|
Li Q, Hu E, Yu K, Lu M, Xie R, Lu F, Lu B, Bao R, Lan G. Magnetic field-mediated Janus particles with sustained driving capability for severe bleeding control in perforating and inflected wounds. Bioact Mater 2021; 6:4625-4639. [PMID: 34095621 PMCID: PMC8141897 DOI: 10.1016/j.bioactmat.2021.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/30/2021] [Accepted: 05/03/2021] [Indexed: 12/17/2022] Open
Abstract
Severe bleeding in perforating and inflected wounds with forky cavities or fine voids encountered during prehospital treatments and surgical procedures is a complex challenge. Therefore, we present a novel hemostatic strategy based on magnetic field-mediated guidance. The biphasic Janus magnetic particle (MSS@Fe2O3-T) comprised aggregates of α-Fe2O3 nanoparticles (Fe2O3 NPs) as the motion actuator, negatively modified microporous starch (MSS) as the base hemostatic substrate, and thrombin as the loaded hemostatic drug. Before application, the particles were first wrapped using NaHCO3 and then doped with protonated tranexamic acid (TXA-NH3+), which ensured their high self-dispersibility in liquids. During application, the particles promptly self-diffused in blood by bubble propulsion and travelled to deep bleeding sites against reverse rushing blood flow under magnetic guidance. In vivo tests confirmed the superior hemostatic performance of the particles in perforating and inflected wounds (“V”-shaped femoral artery and “J”-shaped liver bleeding models). The present strategy, for the first time, extends the range of magnetically guided drug carriers to address the challenges in the hemorrhage control of perforating and inflected wounds. A new Janus hemostat was developed for treating severe bleeding. The “J” shape bleeding model was proposed for hemostatic test. Magnetic field-mediated driving capacity was employed for hemostasis. Explosive self-dispersibility endowed to the hemostat largely enhanced the bleeding control capacity.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Enling Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Kun Yu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Mengxing Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Ruiqi Xie
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Fei Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Bitao Lu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| | - Rong Bao
- The Ninth People's Hospital of Chongqing, No. 69 Jialing Village, BeiBei District, Chongqing, 400715, China
| | - Guangqian Lan
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.,Chongqing Engineering Research Center of Biomaterial Fiber and Modern Textile, Chongqing, 400715, China
| |
Collapse
|
5
|
Gebhard F, Hartmann J, Hardt S. Interaction of proteins with phase boundaries in aqueous two-phase systems under electric fields. SOFT MATTER 2021; 17:3929-3936. [PMID: 33720237 DOI: 10.1039/d0sm01921f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The electric-field driven transport of proteins across the liquid-liquid interface in an aqueous two-phase system (ATPS) is studied in a microfluidic device using fluorescence microscopy. An ATPS containing polyethylene glycol (PEG) and dextran is employed, and bovine serum albumin (BSA) and bovine γ-globulins (BγG) are considered as model proteins. It is shown that both proteins, initially in the dextran-rich phase, accumulate at the liquid-liquid interface, preferably close to the three-phase contact line between the two liquid phases and the microchannel wall. It is in these regions where the proteins penetrate into the PEG-rich phase. The transport resistance of the liquid-liquid interface is higher for BγG than for BSA, such that a much larger molar flux of BSA into the PEG phase is observed. This opens up the opportunity of separating different protein species by utilizing differences in the transport resistance at the interface. A mathematical model is developed, accounting for adsorption and desorption processes at the liquid-liquid interface. The underlying theoretical concept is that of an electrostatic potential minimum formed by superposing the applied electric field and the field due to the Donnan potential at the interface. A fit of the model parameters to the experimental data results in good agreement between theory and experiments, thereby corroborating the underlying picture.
Collapse
Affiliation(s)
- Florian Gebhard
- Technische Universität Darmstadt, Fachbereich Maschinenbau, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany.
| | | | | |
Collapse
|
6
|
Li M, Li D. Electrically controllable cargo delivery with dextran-rich droplets. J Colloid Interface Sci 2021; 582:102-111. [PMID: 32814218 DOI: 10.1016/j.jcis.2020.08.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 11/25/2022]
Abstract
The controllable delivery of cargo is of great importance in many areas, ranging from medicine and materials science to food and cosmetic industries. To fulfil the requirements in different areas, the development of new methods for cargo delivery in a controllable manner is always essential. A novel technique of cargo delivery controlled by electric pulse was developed in this paper. In an aqueous two-phase system, the dextran-rich droplets were fabricated as droplet carriers in a continuous polyethylene glycol-rich phase. The loading and releasing of model cargos (polystyrene particles) across the surface of the droplet carriers under electric pulses were demonstrated in microfluidic chips. By controlling the amplitude of the applied electric pulses, the cargos with designed sizes were sorted and loaded into the droplet carriers; hence, the targeted delivery of cargos by size can be achieved. The exchange of cargos between droplet carriers under reversed electric pulses was also investigated, and the results indicated the flexibility of this method in cargo delivery. Moreover, possible application of this method to biological cargos was demonstrated by controlling the loading and releasing of yeast cells under electric pulses. With the advantages of easy operation and fast response, this approach provides a novel route for controllable cargo delivery with droplets.
Collapse
Affiliation(s)
- Mengqi Li
- Department of Marine Engineering, Dalian Maritime University, Dalian 116026, China; Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Dongqing Li
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.
| |
Collapse
|