1
|
Wang M, Langer M, Altieri R, Crisci M, Osella S, Gatti T. Two-Dimensional Layered Heterojunctions for Photoelectrocatalysis. ACS NANO 2024; 18:9245-9284. [PMID: 38502101 DOI: 10.1021/acsnano.3c12274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Two-dimensional (2D) layered nanomaterial heterostructures, arising from the combination of 2D materials with other low-dimensional species, feature a large surface area to volume ratio, which provides a high density of active sites for catalytic applications and for (photo)electrocatalysis (PEC). Meanwhile, their electronic band structure and high electrical conductivity enable efficient charge transfer (CT) between the active material and the substrate, which is essential for catalytic activity. In recent years, researchers have demonstrated the potential of a range of 2D material interfaces, such as graphene, graphitic carbon nitride (g-C3N4), metal chalcogenides (MCs), and MXenes, for (photo)electrocatalytic applications. For instance, MCs such as MoS2 and WS2 have shown excellent catalytic activity for hydrogen evolution, while graphene and MXenes have been used for the reduction of carbon dioxide to higher value chemicals. However, despite their great potential, there are still major challenges that need to be addressed to fully realize the potential of 2D materials for PEC. For example, their stability under harsh reaction conditions, as well as their scalability for large-scale production are important factors to be considered. Generating heterojunctions (HJs) by combining 2D layered structures with other nanomaterials is a promising method to improve the photoelectrocatalytic properties of the former. In this review, we inspect thoroughly the recent literature, to demonstrate the significant potential that arises from utilizing 2D layered heterostructures in PEC processes across a broad spectrum of applications, from energy conversion and storage to environmental remediation. With the ongoing research and development, it is likely that the potential of these materials will be fully expressed in the near future.
Collapse
Affiliation(s)
- Mengjiao Wang
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| | - Michal Langer
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Warsaw, 02097, Poland
| | - Roberto Altieri
- Institute of Physical Chemistry and Center for Materials Research (LaMa), Justus Liebig University, Giessen, 35392, Germany
| | - Matteo Crisci
- Institute of Physical Chemistry and Center for Materials Research (LaMa), Justus Liebig University, Giessen, 35392, Germany
| | - Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Warsaw, 02097, Poland
| | - Teresa Gatti
- Department of Applied Science and Technology, Politecnico di Torino, Torino, 10129, Italy
| |
Collapse
|
2
|
Lv L, Yang HD, Chen QW, Fan H, Zhou JP. La 2Ti 2O 7 nanosheets modified by Pt quantum dots for efficient NO removal avoiding NO 2 secondary pollutant. ENVIRONMENTAL RESEARCH 2023; 223:115441. [PMID: 36758917 DOI: 10.1016/j.envres.2023.115441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional La2Ti2O7 nanosheets with regular morphology and good dispersion were prepared by the hydrothermal method under a magnetic field. Zero-dimensional Pt quantum dots (Pt-QDs) were loaded on the La2Ti2O7 nanosheets. The electron-hole separation and carrier transfer in the Pt-loaded La2Ti2O7 nanosheets were significantly enhanced. The La2Ti2O7 nanosheets loaded with 3 wt% Pt-QDs exhibit the largest NO removal efficiency of 51% and less than 3.2 ppb NO2 intermediate pollutant in 30 min. The high photocatalytic ability was attributed to the surface plasmon resonance in Pt-QDs and the enhanced electron-hole separation. A large number of e-, h+, •OH and •O2- active species were formed on the surface of Pt-loaded La2Ti2O7 nanosheets under light irradiation. The conversion pathway from NO to NO3- was verified by the in situ diffuse reflectance infrared Fourier-transform spectroscopy and DFT calculation. This work supplies a feasible approach to responsive photocatalysts for efficient, stable, and selective NO removal avoiding the NO2 secondary pollutant.
Collapse
Affiliation(s)
- Li Lv
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China; School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Hong-Dan Yang
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Qi-Wen Chen
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, People's Republic of China
| | - Huiqing Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| | - Jian-Ping Zhou
- School of Physics and Information Technology, Shaanxi Normal University, Xi'an, 710119, People's Republic of China.
| |
Collapse
|
3
|
Li S, Wang H, Li Y, Yang H, Zhu X, Bu Q, Liu Q. Enhancement of photoelectrocatalytic performance of copper cobaltate nanoflowers modified with 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin for methanol oxidation under light. Dalton Trans 2023; 52:3016-3023. [PMID: 36779369 DOI: 10.1039/d2dt04098k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With the continuously increasing global energy demand, there is an urgent requirement to find efficient methanol oxidation reaction (MOR) catalysts that can replace precious metals. In this work, we have elaborately integrated 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin (H2TCPP) with copper cobaltate (CuCo2O4), which possesses efficient separation of photogenerated charges and increased active sites. The mass activity of H2TCPP/CuCo2O4 (534.75 mA mg-1) toward MOR is higher than that of pure CuCo2O4 (291.75 mA mg-1) under light. In addition, H2TCPP/CuCo2O4 can catalyze the oxidation of other alcohols, such as ethanol, ethanediol, isopropanol, and glycerol. This study demonstrates that it is feasible to enhance the MOR activity by the modification of bimetallic transition metal oxides with porphyrins.
Collapse
Affiliation(s)
- Shu Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Haoran Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Yuanhao Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Hui Yang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qijing Bu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
4
|
Mathiarasu RR, Panneerselvam K, Kumar PS, Rangasamy G, Subashchandrabose R, George M. Reline deep eutectic solvent mediated synthesis of lanthanum titanate for heavy metal remediation and photocatalytic degradation. CHEMOSPHERE 2022; 308:136529. [PMID: 36207798 DOI: 10.1016/j.chemosphere.2022.136529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Toxic heavy metal and dye contamination are potential threats that mutilate the essential triad of life; air, water and soil. Despite commercial applicability and importance, the over accumulation of these noxious toxicants has become a disturbing concern. As a result, their remediation has drawn greater fascination leading to the inexplicable quest for a material which can act as both an adsorbent and as a photocatalyst. The present work highlights a novel solid-state technique assisted with reline (Choline chloride: Urea) deep eutectic solvent for the synthesis of lanthanum titanate. The synthesized material was established with physical characterizations like PXRD, FT-IR, UV-DRS, BET, XPS, HR-SEM and TEM techniques. Further, the ruptured petal-like lanthanum titanate was integrated as an adsorbent for the removal of lead (Pb), arsenic (As) and chromium (Cr) heavy metals. The adsorbent presented increased adsorption efficiencies of 96, 74 and 71% towards Pb, As and Cr respectively. Dependence of the degradation efficiency over concentration, pH, contact time and competitive environments were analyzed and inferred. Furthermore, lanthanum titanate was used for the photocatalytic degradation of reactive black (RB5), red (RR198) and yellow (RY145) dyes. The degradation efficiencies were found to be 68.31, 85.2 and 96.8% for RB5, RR198 and RY145 dyes respectively. Variation in concentration and pH of the dye solutions were examined and reaction kinetics was also proposed. In conclusion, the as synthesized lanthanum titanate is assured to play dual roles as a versatile cost-effective adsorbent for the remediation of heavy metals and as a potential candidate for photocatalytic degradation.
Collapse
Affiliation(s)
- Roselin Ranjitha Mathiarasu
- Department of Chemistry, Stella Maris College (Autonomous) affiliated to University of Madras, Chennai, 600 086, Tamil Nadu, India
| | | | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai, 603 110, Tamil Nadu, India
| | - Gayathri Rangasamy
- Department of Sustainable Engineering, Institute of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602 105, Tamil Nadu, India.
| | - Raghu Subashchandrabose
- Center for Advanced Research & Development (CARD)/Chemistry, Vels Institute of Science, Technology & Advanced Studies (VISTAS), Chennai, 600 117, Tamil Nadu, India
| | - Mary George
- Department of Chemistry, Stella Maris College (Autonomous) affiliated to University of Madras, Chennai, 600 086, Tamil Nadu, India.
| |
Collapse
|
5
|
He Y, Wu J, Wang Y, Long Y, Fan G. Synergistic catalytic hydrolysis of ammonia borane to release hydrogen over AgCo@CN. NEW J CHEM 2022. [DOI: 10.1039/d1nj05902e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synergistic catalytic AB hydrolysis to generate hydrogen was achieved over AgCo@CN synthesized by auto-reduction between Co@CN and a Ag precursor.
Collapse
Affiliation(s)
- Yating He
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Jie Wu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yi Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Yan Long
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610068, China
| |
Collapse
|
6
|
Photo-responsive metal/semiconductor hybrid nanostructure: A promising electrocatalyst for solar light enhanced fuel cell reaction. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.049] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
7
|
Ren F, Chen X, Xing R, Du Y. Rod-like MnO 2 boost Pd/reduced graphene oxide nanocatalyst for ethylene glycol electrooxidation. J Colloid Interface Sci 2021; 582:561-568. [PMID: 32911405 DOI: 10.1016/j.jcis.2020.07.133] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/26/2020] [Accepted: 07/27/2020] [Indexed: 01/19/2023]
Abstract
Anode catalyst is one of the core components of fuel cell, but its poor catalytic activity, short lifespan, and high price are tricky problems to the commercialization of fuel cell. Herein, a novel rod-like MnO2 decorated reduced graphene oxide (RGO) supported Pd hybrid (Pd/RGO-MnO2) has been designed, which manifests more negative onset oxidation potential, higher peak current density, and better long-term stability relative to Pd/RGO and pure Pd catalysts when serving for ethylene glycol electrooxidation. This enhancement may be due to the addition of MnO2, which can effectively promote the adsorption of hydroxyl at a lower potential and produce a strong electronic interaction with Pd, as confirmed by X-ray photoelectron spectroscopy (XPS) technique. In view of its excellent performance and low cost, Pd/RGO-MnO2 is considered to be a potential and effective anode catalyst for DEGFCs.
Collapse
Affiliation(s)
- Fangfang Ren
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China.
| | - Xuanrong Chen
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Rong Xing
- College of Chemical and Environmental Engineering, Yancheng Teachers University, Yancheng 224002, China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Superior ethanol electrooxidation activity of Pd supported on Ni(OH)2/C. The effect of Ni(OH)2 nanosheets content. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Jin L, Xu H, Wang C, Wang Y, Shang H, Du Y. Multi-dimensional collaboration promotes the catalytic performance of 1D MoO 3 nanorods decorated with 2D NiS nanosheets for efficient water splitting. NANOSCALE 2020; 12:21850-21856. [PMID: 33104135 DOI: 10.1039/d0nr05250g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to manipulate heterostructures is of great importance to achieve high-performance electrocatalysts for direct water-splitting devices with excellent activity toward hydrogen production. Herein, a novel top-down strategy involving the in situ transformation of one-dimensional MoO3 nanorod arrays grafted with two-dimensional NiS nanosheets supported on a three-dimensional nickel foam skeleton is proposed. Namely, a heterostructured electrocatalyst on the Ni foam skeleton containing MoO3 nanorod arrays decorated with NiS nanosheets is synthesized by a facile hydrothermal method followed by one-step sulfidation treatment. Experimental analysis confirmed that this novel composite has the merits of a large quantity of accessible active sites, unique distribution of three different spatial dimensions, accelerated mass/electron transfer, and the synergistic effect of its components, resulting in impressive electrocatalytic properties toward the hydrogen evolution reaction and oxygen evolution reaction. Furthermore, an advanced water-splitting electrolyzer was assembled with NiS/MoO3/NF as both the anodic and cathodic working electrode. This device requires a low cell voltage of 1.56 V to afford a water-splitting current density of 10 mA·cm-2 in basic electrolyte, outperforming previously reported electrocatalysts and even state-of-the-art electrocatalysts. More significantly, this work provides a way to revolutionize the design of heterostructured electrocatalysts for the large-scale commercial production of hydrogen using direct water-splitting devices.
Collapse
Affiliation(s)
- Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | | | | | | | | | | |
Collapse
|
10
|
Wang Y, Wang C, Jin L, Shang H, Ren F, Yuan M, Du Y. Synergistically engineering ultralow Pt doped FeNi alloy/FeNi phosphide nanoparticles for advanced hydrogen evolution reaction. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125313] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Wang C, Xu H, Wang Y, Shang H, Jin L, Ren F, Song T, Guo J, Du Y. Hollow V-Doped CoMx (M = P, S, O) Nanoboxes as Efficient OER Electrocatalysts for Overall Water Splitting. Inorg Chem 2020; 59:11814-11822. [DOI: 10.1021/acs.inorgchem.0c01832] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, People’s Republic of China
| | - Hui Xu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, People’s Republic of China
| | - Yuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, People’s Republic of China
| | - Hongyuan Shang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, People’s Republic of China
| | - Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, People’s Republic of China
| | - Fangfang Ren
- College of Chemical and Environmental Engineering, Yancheng Teachers University, No. 2 Hope Avenue South Road, Yancheng 224007, People’s Republic of China
| | - Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, People’s Republic of China
| | - Jun Guo
- Testing and Analysis Center, Soochow University, Suzhou 215123, People’s Republic of China
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Renai Road, Suzhou 215123, People’s Republic of China
| |
Collapse
|