1
|
Pang J, Li Q, Su G, Sun B, Song M, Hua Y, Zhang W, Meng J, Shi B. Tailoring Dual High-Valence Cu-O-Mn Active Sites to Enhance VOC Catalytic Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9812-9826. [PMID: 40336143 DOI: 10.1021/acs.est.5c02622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Advancing the catalytic oxidation of volatile organic compounds (VOCs) requires ongoingly boosting of both low-temperature activity and durability. Our strategy was to tailor suitable Cu-O-Mn coordination environments across numerous types of widely used CuMn bimetallic oxides. Unexpectedly, Cu-O-Mn sites within the CuO phase ignited greater catalytic activity toward alkanes like cyclohexane under 5.0% relative humidity, with a lower T90 at 219 °C, and excellent stability over 48 h, compared to spinel phases noted for electron transfer. Doping CuO with high-valence Mn3+ and Mn4+ prefers to generate oxygen interstitials, facilitating the formation of dual high-valence Cu-O-Mn sites. Notably, optimal Cu3Mn1 simultaneously featured high-valence states of Cu1.98+ and Mn3.22+, as evidenced by the positive correlation between catalytic activity and valence state. Dual high-valence Cu-O-Mn sites within the CuO phase bolstered reactive oxygen species mobility, oxidizability, and replenishment, as well as acid sites, facilitating the Mars-van-Krevelen redox cycles. The resulting enhancement rapidly overcame the rate-limiting step of key intermediate benzene oxidation, endowing higher and sustainable reactivity. The superior performance could be validated through the catalytic oxidation of aromatics and alkenes represented by benzene and 1,3-butadiene, respectively. This work offers insights for catalyst design and promotes the practical application of CuMn bimetallic oxides in the VOC disposal.
Collapse
Affiliation(s)
- Jiaxin Pang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukang Hua
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weinan Zhang
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Meng
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Shi
- Key Laboratory of Environmental Nanotechnology and Health Effects, State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Ning H, Cao J, Jin Z, Zuo S, Wang Q, Zhao B. Function of pre-sulfation: Boosting sulfur resistance of nanocrystal PtO 2/KL-NY catalyst in benzene oxidation reaction. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138626. [PMID: 40373405 DOI: 10.1016/j.jhazmat.2025.138626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/24/2025] [Accepted: 05/13/2025] [Indexed: 05/17/2025]
Abstract
Sulfur poisoning remains a critical challenge in benzene catalytic oxidation due to the strong competitive adsorption of sulfur species onto active sites and the subsequent depletion of lattice oxygen in Pt-based catalysts. Our study demonstrates that the sulfur competitive adsorption on the surface and consumption to highly active PtO2 lattice oxygens was effectively weakened by introducing SO42- within kaolin-based NaY zeolite (SO42-@KL-NY). The modified catalyst exhibited enhanced structural stability under sulfur-containing condition, which effectively sheltered adsorbed sulfur species from direct interaction with catalytically active PtO2 lattice oxygens. The optimized PtO2/3SO42-@KL-NY resisted 70 % of sulfur species adsorption on active sites, preventing lattice oxygen consumption by sulfur species, thus it remained high activity and exhibited strong sulfur resistance. This work establishes a new paradigm for designing widely practical and durable Pt-based catalysts for sulfur-containing benzene complete oxidation.
Collapse
Affiliation(s)
- Hanqi Ning
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Junping Cao
- State Key Laboratory of Elemento-Organic Chemistry, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zetao Jin
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China
| | - Shufeng Zuo
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, College of Chemistry and Chemical Engineering, Shaoxing University, Shaoxing 312000, China.
| | - Qiuyan Wang
- Zhejiang Meiyang International Engineering Design Co., Ltd., Hangzhou 310000, China.
| | - Bo Zhao
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Taizhou, Zhejiang 318000, China
| |
Collapse
|
3
|
Jiang B, Liu J, Wei K, Lu H, Weng X, Han J, Zhang Y, Yu S, Sun Y. Boosting chlorobenzene oxidation over MIL-101(Cr) derived CrO x catalysts: The stepwise regulation of CrO x clusters and oxygen species by calcination atmospheres. JOURNAL OF HAZARDOUS MATERIALS 2025; 483:136669. [PMID: 39608076 DOI: 10.1016/j.jhazmat.2024.136669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
In this work, CrOx catalysts derived from MIL-101(Cr) were prepared for the oxidation of chlorobenzene (CB). The atmosphere of calcination had great effect on the physical and chemical properties of the catalysts. Only the atmosphere of Ar could carbonize and preserve the organic ligands in the structure, retaining the micropore structure and high surface area of MIL-101(Cr). Therefore, the aggregation of CrOx clusters was prevented, forming abundant coordinative unsaturated Cr3+ and oxygen vacancies. They would transform to abundant Cr6+ as the active sites in the treatment of 10 %O2/Ar, and acid sites composed with OH and surface adsorbed oxygen were formed around Cr6+, which played an important role on the adsorption/activation of CB and the oxidation of the intermediates. Through the oxygen vacancies, the surface lattice oxygen could migrate and replenish the oxygen consumed around Cr6+. Thus, MIL-101(Cr)-Ar-T, synthesized by MIL-101(Cr) stepwise calcined in Ar and treatment of 10 %O2/Ar, exhibited the highest catalytic activity for CB oxidation with the T90 at 233 °C, and the selectivity to COx and HCl at 240 °C could reach 95.85 % and 97.61 %, respectively, with a high stable performance in the 5-day catalytic activity test.
Collapse
Affiliation(s)
- Boqiong Jiang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Zhejiang Province Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Jun Liu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Keyan Wei
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Hanfeng Lu
- Institute of Catalytic Reaction Engineering, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaole Weng
- College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Jingyi Han
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yi Zhang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Zhejiang Province Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China
| | - Shaocai Yu
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China
| | - Yuhai Sun
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310018, China; Zhejiang Province Key Laboratory of Solid Waste Treatment and Recycling, Hangzhou 310012, China.
| |
Collapse
|
4
|
Wang Q, Wu Z, Wang R, Tang M, Lu S, Cai T, Qiu J, Jin J, Peng Y. New mechanistic insight into catalytic decomposition of dioxins over MnO x-CeO 2/TiO 2 catalysts: A combined experimental and density functional theory study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:170911. [PMID: 38354796 DOI: 10.1016/j.scitotenv.2024.170911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/02/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Elucidation of the catalytic decomposition mechanism of dioxins is pivotal in developing highly efficient dioxin degradation catalysts. In order to accurately simulate the whole molecular structure of dioxins, two model compounds, o-dichlorobenzene (o-DCB) and furan, were employed to represent the chlorinated benzene ring and oxygenated central ring within a dioxin molecule, respectively. Experiments and Density Functional Theory (DFT) calculations were combined to investigate the adsorption as well as oxidation of o-DCB and furan over MnOx-CeO2/TiO2 catalyst (denoted as MnCe/Ti). The results indicate that competitive adsorption exists between furan and o-DCB. The former exhibits superior adsorption capacity on MnCe/Ti catalyst at 100 °C - 150 °C, for it can adsorb on both surface metal atom and surface oxygen vacancies (Ov) via its O-terminal; while the latter adsorbs primarily by anchoring its Cl atom to surface Ov. Regarding oxidation, furan can be completely oxidized at 150 °C - 300 °C with a high CO2 selectivity (above 80 %). However, o-DCB cannot be totally oxidized and the resulting intermediates cause the deactivation of catalyst. Interestingly, the pre-adsorption of furan on catalyst surface can facilitate the catalytic oxidation of o-DCB below 200 °C, possibly because the dissociated adsorption of furan may form additional reactive oxygen species on catalyst surface. Therefore, this work provides new insights into the catalytic decomposition mechanism of dioxins as well as the optimization strategies for developing dioxin-degradation catalysts with high efficiency at low temperature.
Collapse
Affiliation(s)
- Qiulin Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhihao Wu
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Rui Wang
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Minghui Tang
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| | - Shengyong Lu
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China; Research Institute of Zhejiang University-Taizhou, Taizhou 318012, Zhejiang, China.
| | - Tianyi Cai
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Juan Qiu
- Research Institute of Zhejiang University-Taizhou, Taizhou 318012, Zhejiang, China
| | - Jing Jin
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yaqi Peng
- State Key Laboratory of Clean Energy Utilization, Institute for Thermal Power Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
5
|
Dong L, Jiang K, Shen Q, Xie L, Mei J, Yang S. Catalytic Oxidation of Chlorobenzene over HSiW/CeO 2 as a Co-Benefit of NO x Reduction: Remarkable Inhibition of Chlorobenzene Oxidation by NH 3. MATERIALS (BASEL, SWITZERLAND) 2024; 17:828. [PMID: 38399079 PMCID: PMC10890138 DOI: 10.3390/ma17040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024]
Abstract
There is an urgent need to develop novel and high-performance catalysts for chlorinated volatile organic compound oxidation as a co-benefit of NOx. In this work, HSiW/CeO2 was used for chlorobenzene (CB) oxidation as a co-benefit of NOx reduction and the inhibition mechanism of NH3 was explored. CB oxidation over HSiW/CeO2 primarily followed the Mars-van-Krevelen mechanism and the Eley-Rideal mechanism, and the CB oxidation rate was influenced by the concentrations of surface adsorbed CB, Ce4+ ions, lattice oxygen species, gaseous CB, and surface adsorbed oxygen species. NH3 not only strongly inhibited CB adsorption onto HSiW/CeO2, but also noticeably decreased the amount of lattice oxygen species; hence, NH3 had a detrimental effect on the Mars-van-Krevelen mechanism. Meanwhile, NH3 caused a decrease in the amount of oxygen species adsorbed on HSiW/CeO2, which hindered the Eley-Rideal mechanism of CB oxidation. Hence, NH3 significantly hindered CB oxidation over HSiW/CeO2. This suggests that the removal of NOx and CB over this catalyst operated more like a two-stage process rather than a synergistic one. Therefore, to achieve simultaneous NOx and CB removal, it would be more meaningful to focus on improving the performances of HSiW/CeO2 for NOx reduction and CB oxidation separately.
Collapse
Affiliation(s)
| | | | | | | | - Jian Mei
- School of Environment & Ecology, Jiangnan University, Wuxi 214122, China
| | | |
Collapse
|
6
|
Zhao H, Meng P, Gao S, Wang Y, Sun P, Wu Z. Recent advances in simultaneous removal of NOx and VOCs over bifunctional catalysts via SCR and oxidation reaction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167553. [PMID: 37802335 DOI: 10.1016/j.scitotenv.2023.167553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/08/2023]
Abstract
NOx and volatile organic compounds (VOCs) are two major pollutants commonly found in industrial flue gas emissions. They play a significant role as precursors in the formation of ozone and fine particulate matter (PM2.5). The simultaneous removal of NOx and VOCs is crucial in addressing ozone and PM2.5 pollution. In terms of investment costs and space requirements, the development of bifunctional catalysts for the simultaneous selective catalytic reduction (SCR) of NOx and catalytic oxidation of VOCs emerges as a viable technology that has garnered considerable attention. This review provides a summary of recent advances in catalysts for the simultaneous removal of NOx and VOCs. It discusses the reaction mechanisms and interactions involved in NH3-SCR and VOCs catalytic oxidation, the effects of catalyst acidity and redox properties. The insufficiency of bifunctional catalysts was pointed out, including issues related to catalytic activity, product selectivity, catalyst deactivation, and environmental concerns. Subsequently, potential solutions are presented to enhance catalyst performance, such as optimizing the redox properties and acidity, enhancing resistance to poisoning, substituting environment friendly metals and introducing hydrocarbon selective catalytic reduction (HC-SCR) reaction. Finally, some suggestions are given for future research directions in catalyst development are prospected.
Collapse
Affiliation(s)
- Huaiyuan Zhao
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Pu Meng
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Shan Gao
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China.
| | - Yuejun Wang
- Zhejiang Tianlan Environmental Protection Technology Co., Ltd., Hangzhou 311202, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Pengfei Sun
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
7
|
Gu M, Huang Q, Xu L, Zhu J, Sun Y, Tao T, Yang B, Chen M, Yang H. Improved activity and stability for chlorobenzene oxidation over ternary Cu-Mn-O-Ce solid solution supported on cordierite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:37535-37546. [PMID: 36574117 DOI: 10.1007/s11356-022-24988-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/22/2022] [Indexed: 06/18/2023]
Abstract
A series of CuMnOx/CeO2/cordierite and CuMnCeOx/cordierite catalysts prepared by a complex method with citric acid were investigated for the performance of chlorobenzene (CB) oxidation. The effects of the molar ratio of Mn/Cu, transition metal oxide loading, calcination temperature and time were investigated as the main investigation factor for the performance. Meanwhile, XRD, SEM, BET, H2-TPR, O2-TPD and XPS were conducted to characterize the physicochemical properties of these catalysts. The results demonstrated that CuMnOx/CeO2/cordierite catalysts prepared by step-by-step synthesis with the Cu/Mn molar ratio of 5:2 exhibited a high activity (T90 = 350 °C), owing to the incorporation of CuO and MnOx for forming CuMn2O4 spinel oxide supported on CeO2 surface. More importantly, CuMnCeOx/cordierite catalysts prepared by one-step exhibited the highest oxidation activity (T90 < 300 °C) attributed to the low H2 reduction temperature and desorption energy of surface oxygen, and the formed Cu-Mn-O-Ce solid solution and CeO2 promoted the high dispersion of CuMnOx in the supported catalysts. In addition, the possible oxidation mechanism was described to demonstrate the by-products generation and oxygen transfer of CuMnCeOx catalysts.
Collapse
Affiliation(s)
- Mingyang Gu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing, 210044, China
| | - Qiong Huang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing, 210044, China.
| | - Lirui Xu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing, 210044, China
| | - Jie Zhu
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing, 210044, China
| | - Yueyin Sun
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing, 210044, China
| | - Tao Tao
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing, 210044, China
| | - Bo Yang
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing, 210044, China
| | - Mindong Chen
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technologies, Jiangsu Key Laboratory of Atmospheric Environmental Monitoring & Pollution Control, School of Environmental Science & Engineering, Nanjing University of Information Science & Technology, No. 219 Ningliu Road, Nanjing, 210044, China
| | - Hong Yang
- Department of Geography and Environmental Science, University of Reading, Whiteknights, Reading, RG6 6AB, UK
| |
Collapse
|
8
|
Liang W, Zhu Y, Ren S, Shi X. Enhanced catalytic elimination of chlorobenzene over Ru/TiO2 modified with SnO2—Synergistic performance of oxidation and acidity. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2022.111787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Su Y, Fu K, Pang C, Zheng Y, Song C, Ji N, Ma D, Lu X, Liu C, Han R, Liu Q. Recent Advances of Chlorinated Volatile Organic Compounds' Oxidation Catalyzed by Multiple Catalysts: Reasonable Adjustment of Acidity and Redox Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:9854-9871. [PMID: 35635373 DOI: 10.1021/acs.est.2c01420] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The severe hazard of chlorinated volatile organic compounds (CVOCs) to human health and the natural environment makes their abatement technology a key topic of global environmental research. Due to the existence of Cl, the byproducts of CVOCs in the catalytic combustion process are complex and toxic, and the possible generation of dioxin becomes a potential risk to the environment. Well-qualified CVOC catalysts should process favorable low-temperature catalytic oxidation ability, excellent selectivity, and good resistance to poisoning, which are governed by the reasonable adjustment of acidity and redox properties. This review overviews the application of different types of multicomponent catalysts, that is, supported noble metal catalysts, transition metal oxide/zeolite catalysts, composite transition metal oxide catalysts, and acid-modified catalysts, for CVOC degradation from the perspective of balance between acidity and redox properties. This review also highlights the synergistic degradation of CVOCs and NOx from the perspective of acidity and redox properties. We expect this work to inspire and guide researchers from both the academic and industrial communities and help pave the way for breakthroughs in fundamental research and industrial applications in this field.
Collapse
Affiliation(s)
- Yun Su
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Kaixuan Fu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Caihong Pang
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Yanfei Zheng
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Chunfeng Song
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Na Ji
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Degang Ma
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Xuebin Lu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Caixia Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Rui Han
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| | - Qingling Liu
- Tianjin Key Lab of Indoor Air Environmental Quality Control, School of Environmental Science and Technology, Tianjin University, Tianjin 300350, China
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
| |
Collapse
|
10
|
Wu C, Fan Z, Lu D, Wu X, Du Y, Guo X. Insight into the contribution of cerium oxide to MnOx/CeO2 in methanol oxidation reaction: Perspective from the crystal facet of CeO2. ChemCatChem 2022. [DOI: 10.1002/cctc.202200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Chaohui Wu
- Taiyuan University of Technology Department of Chemistry and Chemical Engineering CHINA
| | - Zhaoyang Fan
- Taiyuan University of Technology Department of Chemistry and Chemical Engineering CHINA
| | - Dong Lu
- Taiyuan University of Technology Department of Chemistry and Chemical Engineering CHINA
| | - Xu Wu
- Taiyuan University of Technology College of Chemistry and Chemical Engineering 79 Yingze West Street 030024 Taiyuan CHINA
| | - Yali Du
- Jinzhong University Department of Chemistry and Chemical Engineering CHINA
| | - Xingmei Guo
- Taiyuan University of Technology Department of Chemistry and Chemical Engineering CHINA
| |
Collapse
|
11
|
Zang P, Liu J, Liu X, Zhang G, Chen J, Li J, Zhang Y. Remarkable enhancement in the N 2 selectivity of NH 3-SCR over the CeNb 3Fe 0.3/TiO 2 catalyst in the presence of chlorobenzene. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19309-19323. [PMID: 34713406 DOI: 10.1007/s11356-021-17116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
The simultaneous removal of NOx and dioxins is the frontier of environmental catalysis, which is still in the initial stage and poses several challenges. In this study, a series of CeNb3Fex/TiO2 (x = 0, 0.3, 0.6, and 1.0) catalysts were prepared by the sol-gel method and examined for the synergistic removal of NOx and CB. The CeNb3Fe0.3/TiO2 catalyst exhibits an optimum catalytic performance, with an NOx conversion greater than 95% at 260-380 °C. It also exhibits an optimal CB oxidation activity, in which CB promoted both the NOx conversion and N2 selectivity below 250 °C. Moreover, the more favorable ratios of Ce4+ to Ce3+ and plentiful surface-adsorbed oxygen species are the reasons why CeNb3Fe0.3/TiO2 catalyst has better catalytic activity than other catalysts at the lower temperature. Simultaneously, owing to the modulation of Fe to the redox properties of Ce and Nb, the large number of oxygen vacancies and acid sites was generated, and the CeNb3Fe0.3/TiO2 catalyst is beneficial to NOx reduction and CB oxidation. Furthermore, the results of in situ DRIFTS study reveal the NH3-SCR reactions over CeNb3Fe0.3/TiO2 catalysts are mainly conformed to by the L-H mechanism (< 350 °C) and E-R mechanism (> 350 °C), respectively, and the multi-pollutant conversion mechanism in the synergistic reaction was systematically studied.
Collapse
Affiliation(s)
- Pengchao Zang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, People's Republic of China
| | - Jun Liu
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, People's Republic of China.
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, National Engineering, Tsinghua University, Beijing, 100084, People's Republic of China.
| | - Xiaoqing Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, National Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
- School of Environment and Safety Engineering, North University of China, Taiyuan, 030051, Shanxi, People's Republic of China
| | - Guojie Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China.
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, People's Republic of China.
| | - Jianjun Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, National Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Laboratory for Multi Flue Gas Pollution Control Technology and Equipment, School of Environment, National Engineering, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Yongfa Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, 030024, People's Republic of China
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, 030024, Shanxi, People's Republic of China
| |
Collapse
|
12
|
Ceria-supported niobium oxide catalyst for low-temperature oxidation of 1,3-butadiene. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2021.112083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
13
|
Ying Q, Liu Y, Li H, Zhang Y, Wu Z. A comparative study of the dichloromethane catalytic combustion over ruthenium-based catalysts: Unveiling the roles of acid types in dissociative adsorption and by-products formation. J Colloid Interface Sci 2021; 605:537-546. [PMID: 34340038 DOI: 10.1016/j.jcis.2021.07.095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/14/2021] [Accepted: 07/18/2021] [Indexed: 01/19/2023]
Abstract
Herein, a comparative investigation of the Ru-based catalysts with different kinds of supports (TiO2, Al2O3, HZSM-5 SiO2/Al2O3 = 27 and 130, respectively) for catalytic combustion of dichloromethane (DCM) has been performed. The characterization results showed that the C-Cl bond of DCM was cleaved on both the Brønsted and Lewis acid sites of the catalysts. However, the Lewis acid sites were more active than the Brønsted acid sites. The relatively strong Lewis acidity of Ru/TiO2 improved the dissociative adsorption of DCM, accounting for its superior activity. The yield of toxic by-products was strongly associated with the acid types of the catalysts. The Cl species deposited on TiO2 and Al2O3 supports interacted strongly with the Lewis acid sites, thereby promoting the electrophilic chlorination reactions and yielding more polychlorinated by-products, especially highly toxic dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). However, the Cl deposits on Ru/HZSM-5 (SiO2/Al2O3 = 27) with abundant Brønsted acid sites, mainly existed as hydrogen-bonded Cl species, with good mobility and less propensity for chlorinating carbonaceous matter. Moreover, Ru/HZSM-5 (SiO2/Al2O3 = 130) yielded the highest polychlorinated by-products and PCDD/Fs because of its poor redox ability and high surface area. Overall, this study provides valuable insights into the CVOCs catalytic combustion catalysts development.
Collapse
Affiliation(s)
- Qingji Ying
- Department of Environmental Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yue Liu
- Department of Environmental Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
| | - Haoyang Li
- Department of Environmental Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Yaoyu Zhang
- Department of Environmental Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Zhongbiao Wu
- Department of Environmental Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China; Zhejiang Provincial Engineering Research Center of Industrial Boiler & Furnace Flue Gas Pollution Control, 866 Yuhangtang Road, Hangzhou 310058, PR China
| |
Collapse
|
14
|
Zhang M, Cai S, Li J, Elimian EA, Chen J, Jia H. Ternary multifunctional catalysts of polymeric carbon nitride coupled with Pt-embedded transition metal oxide to enhance light-driven photothermal catalytic degradation of VOCs. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125266. [PMID: 33548787 DOI: 10.1016/j.jhazmat.2021.125266] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 01/11/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Light driven photothermal catalysis has been carried out by converting the light energy into heat to reach the light-off temperature of the reaction. Herein we have synthesized the ternary multifunctional catalysts of polymeric carbon nitride coupled with Pt-embedded transition metal oxide (Pt-Cox/CN), for the catalytic degradation of toluene. Under the condition of space velocity of 30,000 mL/(gh) and concentration of 210 ppm, toluene conversion and CO2 mineralization can reach 90% and 83% over Pt-Co20/CN, respectively. The introduction of an appropriate proportion of CoO enhances the light absorption of nanocomposites and improves the adsorption for toluene. Meanwhile, CoO promotes the proportion and mobility of adsorbed oxygen on the surface, which are conducive to the catalytic oxidation reaction according to the Mars-van Krevelen mechanism. The results also suggest that light irradiation serves as a source of heat to initiate photo-induced chemical reactions and promote photothermal catalytic oxidation by promoting the activation of lattice oxygen.
Collapse
Affiliation(s)
- Meng Zhang
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Songcai Cai
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juanjuan Li
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ehiaghe Agbovhimen Elimian
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, Zhejiang, China
| | - Jing Chen
- University of Chinese Academy of Sciences, Beijing 100049, China; Xiamen Institute of Rare-earth Materials, Haixi Institutes, Chinese Academy of Sciences, Xiamen 361021, Fujian, China
| | - Hongpeng Jia
- CAS Center for Excellence in Regional Atmospheric Environment, and Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
15
|
Unveiling the importance of reactant mass transfer in environmental catalysis: Taking catalytic chlorobenzene oxidation as an example. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
16
|
Lv X, Cai S, Chen J, Yan D, Jiang M, Chen J, Jia H. Tuning the degradation activity and pathways of chlorinated organic pollutants over CeO 2 catalyst with acid sites: synergistic effect of Lewis and Brønsted acid sites. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00626f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The synergistic effect of Lewis and Brønsted acid sites can promote the effective degradation of chlorobenzene following the hydrolysis pathway of producing less toxic by-products.
Collapse
Affiliation(s)
- Xuelong Lv
- CAS Center for Excellence in Regional Atmospheric Environment
- and Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment, Chinese Academy of Sciences
- Xiamen
- China
| | - Songcai Cai
- CAS Center for Excellence in Regional Atmospheric Environment
- and Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment, Chinese Academy of Sciences
- Xiamen
- China
| | - Jin Chen
- CAS Center for Excellence in Regional Atmospheric Environment
- and Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment, Chinese Academy of Sciences
- Xiamen
- China
| | - Dongxu Yan
- CAS Center for Excellence in Regional Atmospheric Environment
- and Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment, Chinese Academy of Sciences
- Xiamen
- China
| | - Mingzhu Jiang
- CAS Center for Excellence in Regional Atmospheric Environment
- and Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment, Chinese Academy of Sciences
- Xiamen
- China
| | - Jing Chen
- University of Chinese Academy of Sciences
- Beijing
- China
- Xiamen Institute of Rare-earth Materials
- Haixi Institutes
| | - Hongpeng Jia
- CAS Center for Excellence in Regional Atmospheric Environment
- and Key Laboratory of Urban Pollutant Conversion
- Institute of Urban Environment, Chinese Academy of Sciences
- Xiamen
- China
| |
Collapse
|
17
|
Zhao S, Kang D, Liu Y, Wen Y, Xie X, Yi H, Tang X. Spontaneous Formation of Asymmetric Oxygen Vacancies in Transition-Metal-Doped CeO2 Nanorods with Improved Activity for Carbonyl Sulfide Hydrolysis. ACS Catal 2020. [DOI: 10.1021/acscatal.0c02832] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shunzheng Zhao
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Dongjuan Kang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yunpeng Liu
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanfeng Wen
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xizhou Xie
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Honghong Yi
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Xiaolong Tang
- Department of Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
- Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|