1
|
Dhakshinamoorthy A, Li Z, Yang S, Garcia H. Metal-organic framework heterojunctions for photocatalysis. Chem Soc Rev 2024; 53:3002-3035. [PMID: 38353930 DOI: 10.1039/d3cs00205e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Heterojunctions combining two photocatalysts of staggered conduction and valence band energy levels can increase the photocatalytic efficiency compared to their individual components. This activity enhancement is due to the minimization of undesirable charge recombination by the occurrence of carrier migration through the heterojunction interface with separated electrons and holes on the reducing and oxidizing junction component, respectively. Metal-organic frameworks (MOFs) are currently among the most researched photocatalysts due to their tunable light absorption, facile charge separation, large surface area and porosity. The present review summarizes the current state-of-the-art in MOF-based heterojunctions, providing critical comments on the construction of these heterostructures. Besides including examples showing the better performance of MOF heterojunctions for three important photocatalytic processes, such as hydrogen evolution reaction, CO2 photoreduction and dye decolorization, the focus of this review is on describing synthetic procedures to form heterojunctions with MOFs and on discussing the experimental techniques that provide evidence for the operation of charge migration between the MOF and the other component. Special attention has been paid to the design of rational MOF heterojunctions with small particle size and controlled morphology for an appropriate interfacial contact. The final section summarizes the achievements of the field and provides our views on future developments.
Collapse
Affiliation(s)
- Amarajothi Dhakshinamoorthy
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia 46022, Spain.
- School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | - Zhaohui Li
- Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350116, P. R. China
| | - Sihai Yang
- College of Chemistry and Molecular Engineering, Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Department of Chemistry, University of Manchester, Manchester, M13 9PL, UK
| | - Hermenegildo Garcia
- Departamento de Química/Instituto Universitario de Tecnología Química (CSIC-UPV), Universitat Politècnica de València, Avda. de los Naranjos s/n, 46022 Valencia, Spain.
| |
Collapse
|
2
|
Schlachter A, Asselin P, Fortin D, Karsenti PL, Harvey PD. Strong Host-Guest Dependence on the Emissive Properties of MOF-5 and [Zn 2(BTTB)(DMF) 2•(H 2O) 3] n. Inorg Chem 2023; 62:13757-13764. [PMID: 37578992 DOI: 10.1021/acs.inorgchem.3c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
3D-[Zn4O(1,4-BDC)3•x(solvent)]n (MOF-5; BDC = 1,4-benzodicarboxylate) and 3D-[Zn2(BTTB)(DMF)2•(H2O)3]n (MOF-D; BTTB = 4,4',4″,4‴-benzene-1,2,4,5-tetrayltetrabenzoate) have been investigated by means of steady-state UV-visible and fluorescence and time-resolved emission spectroscopy, as a function of solvent and power of the excitation irradiation. The low-temperature X-ray structures (173 K) were permitted to locate solvent molecules (here H2O) in the lattice. They were found distributed in the middle in the voids with no evidence of specific interactions (H-bond, coulombic, and dipole-dipole) with the framework. The fluorescence decays of the ligands (ππ* excited state), τF, for the host-guest composites MOF-5@solvent and MOF-D@solvent (solvent = air, MeCN, EtCN, MeOH, EtOH, and DMF) were found bi-exponential (short τF1 (ps), and long τF2 (ns)) with one important feature: upon cooling from 298 to 77 K, MOF-5's τF1 decreases and τF2 increases, while the opposite trend is generally observed in MOF-D. The low values for τF1 (ps) in MOF-5 are associated with the augmented probability of solvent-ligand collisions leading to nonradiative deactivation, which upon cooling to 77 K increases further as the scaffolding contracts. The augmentation in τF2 is readily associated with the increased rigidity of the ligands that are not submitted to this effect (at the surface of the MOF and as pendent groups). For the low emitter MOF-D, the reversed situation is noted but not as clearly due to the uncertainties in the data. Upon increasing the excitation flux, the fluorescence intensity increases linearly with the laser power indicating the absence of singlet-singlet annihilation, inferring the absence of efficient exciton migration. This observation is explained by the small absorptivity coefficients, which leads to a small J spectral overlap between absorption and fluorescence according to the Forster and Dexter theories, and consequently, a small rate for energy migration. This conclusion drastically changes the perception of the photocatalytic mechanism of MOF-5 and other MOFs exhibiting similar absorption features (i.e., no antenna effect).
Collapse
Affiliation(s)
- Adrien Schlachter
- Département de Chimie, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Paul Asselin
- Département de Chimie, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Daniel Fortin
- Département de Chimie, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Paul-Ludovic Karsenti
- Département de Chimie, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| | - Pierre D Harvey
- Département de Chimie, Université de Sherbrooke, 2500 Boul de l'Université, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
3
|
Ni-MOF-74-derived ZnIn2S4/P-Ni-MOF-74 Z-scheme heterojunctions for highly efficient photocatalytic hydrogen evolution under visible light irradiation. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2023]
|
4
|
Cao J, Zhang J, Guo W, Chen H, Li J, Jing D, Luo B, Ma L. A Type-I Heterojunction by Anchoring Ultrafine Cu 2O on Defective TiO 2 Framework for Efficient Photocatalytic H 2 Production. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Jiamei Cao
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi710049, China
| | - Jiankang Zhang
- State Power Investment Group Xinjiang Energy Chemical Co., Ltd., Urumqi, Xinjiang830010, China
| | - Wangui Guo
- State Power Investment Group Xinjiang Energy Chemical Co., Ltd., Urumqi, Xinjiang830010, China
| | - Hao Chen
- State Power Investment Group Xinjiang Energy Chemical Co., Ltd., Urumqi, Xinjiang830010, China
| | - Jinghua Li
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi710049, China
| | - Dengwei Jing
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi710049, China
| | - Bing Luo
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi710049, China
| | - Lijing Ma
- International Research Center for Renewable Energy & State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi710049, China
| |
Collapse
|
5
|
Lu J, Wang S, Zhao Y, Ge K, Wang J, Cui H, Yang Y, Yang Y. Photocatalytic reduction of CO2 by two-dimensional Zn-MOF-NH2/Cu heterojunctions. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
6
|
Bi W, Wang G, Hu X. Fabrication of Zn-MOF derived graphitic carbon materials with mesoporous structure for adsorptive removal of ceftazidime from aqueous solutions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Yang Y, Xing Z, Kong W, Wu C, Peng H, Li Z, Zhou W. Metal-organic framework (MOF)-5/CuO@ZnIn 2S 4 core-shell Z-scheme tandem heterojunctions for improved charge separation and enhanced photocatalytic performance. NANOSCALE 2022; 14:14741-14749. [PMID: 36172834 DOI: 10.1039/d2nr03557j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Interface engineering is regarded as an effective strategy for charge separation. Metal-organic framework (MOF)-5/CuO@ZnIn2S4 core-shell Z-scheme tandem heterojunctions with a three-dimensional floral spherical shape are prepared by a two-step solvothermal and oxidative method. The flower spherical core-shell structure enhances multiple reflections and refractions of light and thus improves light utilization efficiently. In addition, this core-shell structure can supply sufficient active sites for photocatalytic reactions. Meanwhile, the composition of Z-scheme tandem heterojunctions and the photothermal effect contributed to the spatial charge separation and accelerated the photocatalytic process. The photocatalytic hydrogen production rate of MOF-5/CuO@ZnIn2S4 (1938.3 μmol g-1 h-1) is 18 times higher than that of pristine MOF-5, and the photocatalytic degradation efficiency of 2,4-dichlorophenol and phenol can reach up to 98.7% and 97.3%, respectively. In addition, multiple cycle experiments demonstrate high stability, which is favorable for practical applications.
Collapse
Affiliation(s)
- Yi Yang
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Zipeng Xing
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Weifeng Kong
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Chunxu Wu
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Hui Peng
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| | - Wei Zhou
- Department of Environmental Science, School of Chemistry and Materials Science, Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, P. R. China.
- Shandong Provincial Key Laboratory of Molecular Engineering, School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, P. R. China.
| |
Collapse
|
8
|
Yao T, Tan Y, Zhou Y, Chen Y, Xiang M. Preparation of core-shell MOF-5/Bi2WO6 composite for the enhanced photocatalytic degradation of pollutants. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.122882] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
9
|
Li L, Wang X, Gu H, Zhang H, Zhang J, Zhang Q, Dai WL. Which Is More Efficient in Promoting the Photocatalytic H 2 Evolution Performance of g-C 3N 4: Monometallic Nanocrystal, Heterostructural Nanocrystal, or Bimetallic Nanocrystal? Inorg Chem 2022; 61:4760-4768. [PMID: 35245035 DOI: 10.1021/acs.inorgchem.2c00171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Generally, an excellent cocatalyst could promote the photocatalytic hydrogen (H2) evolution performance of g-C3N4 significantly. Herein, a superior cocatalyst of gold-platinum (AuPt) nanocrystal with an ultralow content of Pt was successfully decorated on carbon self-doping g-C3N4 nanosheets (AuPt/CCN) via a facile photodeposition route. The corresponding Pt/CCN, Au/CCN, Au/Pt/CCN, and Pt/Au/CCN were also prepared for comparison. It is found that AuPt/CCN exhibits much superior photocatalytic H2 evolution performance (1135 μmol/h) when irradiated with a 300 W Xe lamp, up to 20, 12, 5, 2, and 1.5 times that of the pristine CCN, Pt/CCN, Au/CCN, Au/Pt/CCN, and Pt/Au/CCN, respectively. The quantum efficiency (QE) of AuPt/CCN at 420 nm reaches 12.5%. The experimental and density functional theory calculation results suggested that the improved AuPt performance can be mainly ascribed to the non-plasmon-related synergistic effect of Au and Pt atoms in AuPt nanocrystal: (1) the proximity and the electronegativity difference of Au and Pt atoms in AuPt accelerate the transfer and separation of charge carriers and (2) the synergistic interaction between Pt and Au atoms optimizes the Gibbs free energy (ΔGH*) of H* (atom) adsorption on AuPt, promoting the H2 generation kinetics of AuPt/CCN.
Collapse
Affiliation(s)
- Lingfeng Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Xiaohao Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Huajun Gu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Huihui Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Juhua Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Quan Zhang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Wei-Lin Dai
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
10
|
Liu W, Kang Q, Wang L, Wen L, Li Z. Facile synthesis of Z-scheme g-C3N4@MIL-100 (Fe) and the efficient photocatalytic degradation on doxycycline and disinfection by-products by coupling with persulfate: Mechanism and pathway. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Chen A, Zhang J, Zhou Y, Tang H. Preparation of a zinc-based metal–organic framework (MOF-5)/BiOBr heterojunction for photodegradation of Rhodamine B. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02107-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
12
|
Zhao X, Li J, Li X, Huo P, Shi W. Design of metal-organic frameworks (MOFs)-based photocatalyst for solar fuel production and photo-degradation of pollutants. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(20)63715-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|