1
|
Fu X, Zhang Z, Zheng Y, Lu J, Cheng S, Su J, Wei H, Gao Y. Cobalt phosphide/nickel-cobalt phosphide heterostructured hollow nanoflowers for high-performance supercapacitor and overall water splitting. J Colloid Interface Sci 2024; 653:1272-1282. [PMID: 37797503 DOI: 10.1016/j.jcis.2023.09.124] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/01/2023] [Accepted: 09/21/2023] [Indexed: 10/07/2023]
Abstract
In this work, a novel CoP/NiCoP heterostructure with hollow nanoflower morphology is designed and constructed. Benefiting from the hollow nanoflower morphology and tuned electronic structure, the heterostructured CoP/NiCoP hollow nanoflowers are demonstrated as both high-performance supercapacitor electrode materials and superior bifunctional electrocatalysts in overall water splitting. The CoP/NiCoP delivers a high capacitance of 1476.6 F g-1 at 1.0 A g-1 and shows enhanced rate capability. The constructed asymmetric supercapacitor achieves a high energy density of 32.4 Wh kg-1 at 800.5 W kg-1 and high power density of 16.5 kW kg-1 at 20.0 Wh kg-1. The CoP/NiCoP hollow nanoflowers are also proven to be remarkable hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) catalyst which achieves the current density of 10.0 mA cm-2 under an overpotential of 110.4 mV for HER and 310.7 mV for OER with superior stability in alkaline solution. In addition, the constructed CoP/NiCoP||CoP/NiCoP cell with CoP/NiCoP as both cathode material and anode material only requires 1.63 V @ 10.0 mA cm-2 for overall water splitting. This study sheds lights on the rational design and construction of bimetallic phosphides for both supercapacitor and overall water splitting.
Collapse
Affiliation(s)
- Xiutao Fu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China
| | - Zhi Zhang
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China.
| | - Yifan Zheng
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China
| | - Jianing Lu
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China
| | - Siya Cheng
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China
| | - Jun Su
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China
| | - Helin Wei
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China
| | - Yihua Gao
- School of Physics & Wuhan National Laboratory for Optoelectronics (WNLO), Huazhong University of Science and Technology (HUST), Luoyu Road 1037, Wuhan 430074, PR China.
| |
Collapse
|
2
|
Zhang N, Amorim I, Liu L. Multimetallic transition metal phosphide nanostructures for supercapacitors and electrochemical water splitting. NANOTECHNOLOGY 2022; 33:432004. [PMID: 35820404 DOI: 10.1088/1361-6528/ac8060] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Transition metal phosphides (TMPs) have recently emerged as an important class of functional materials and been demonstrated to be outstanding supercapacitor electrode materials and catalysts for electrochemical water splitting. While extensive investigations have been devoted to monometallic TMPs, multimetallic TMPs have lately proved to show enhanced electrochemical performance compared to their monometallic counterparts, thanks to the synergistic effect between different transition metal species. This topical review summarizes recent advance in the synthesis of new multimetallic TMP nanostructures, with particular focus on their applications in supercapacitors and electrochemical water splitting. Both experimental reports and theoretical understanding of the synergy between transition metal species are comprehensively reviewed, and perspectives of future research on TMP-based materials for these specific applications are outlined.
Collapse
Affiliation(s)
- Nan Zhang
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- School of Materials, Sun Yat-sen University, Shenzhen, Guangdong 518100, People's Republic of China
| | - Isilda Amorim
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Centre of Chemistry, University of Minho, Gualtar Campus, Braga, 4710-057, Portugal
| | - Lifeng Liu
- Clean Energy Cluster, International Iberian Nanotechnology Laboratory (INL), 4715-330 Braga, Portugal
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, People's Republic of China
| |
Collapse
|
3
|
High-performance asymmetric supercapacitor based on Co–Mo–S/ Co–Mo-LDH nanosheets grown on Co-MOF square tetrahedral structure. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122760] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
4
|
Deng L, Fang N, Wu S, Shu S, Chu Y, Guo J, Cen W. Uniform H-CdS@NiCoP core-shell nanosphere for highly efficient visible-light-driven photocatalytic H 2 evolution. J Colloid Interface Sci 2022; 608:2730-2739. [PMID: 34799046 DOI: 10.1016/j.jcis.2021.10.190] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 01/12/2023]
Abstract
Constructing highly efficient and cost-effective photocatalyst system has been a big challenge for photocatalysis. Herein, CdS nanosphere (N-CdS), hollow CdS (H-CdS) and a series of H-CdS@NiCoP core-shell nanospheres have been successfully prepared via a facile hydrothermal method. The activity test showed that H-CdS exhibited higher photocatalytic activity (3.34 mmol g-1h-1) compared with N-CdS (0.99 mmol g-1h-1) under visible light irradiation (λ ≥ 420 nm), suggesting that hollow structure could effectively improve photocatalytic activity. Moreover, the H-CdS@NiCoP-7 wt% displayed a maximum photocatalytic H2 evolution rate of 13.47 mmol g-1h-1, which was about 4 times and 2.5 times higher than that of pristine H-CdS and H-CdS@Pt-3 wt%, respectively. Furthermore, H-CdS@NiCoP-7 wt% exhibited a good stability during 20 h test. The physicochemical properties were characterized by XRD, SEM, TEM, XPS, UV-vis DRS, PL and photoelectrochemical technique. The results showed that NiCoP addition can construct p-n junction with H-CdS and effectively promote the charge transfer from CdS to NiCoP, which improved the photocatalytic hydrogen evolution activity. This work revealed that NiCoP could react as an excellent co-catalyst for enhancing H-CdS photocatalytic activity.
Collapse
Affiliation(s)
- Lili Deng
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Ningjie Fang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Shilin Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Song Shu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Yinghao Chu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China.
| | - Jiaxiu Guo
- College of Architecture and Environment, Sichuan University, Chengdu 610065, Sichuan, China
| | - Wanglai Cen
- Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610065, Sichuan, China
| |
Collapse
|
5
|
Asen P, Esfandiar A, Mehdipour H. Urchin-like hierarchical ruthenium cobalt oxide nanosheets on Ti 3C 2T x MXene as a binder-free bifunctional electrode for overall water splitting and supercapacitors. NANOSCALE 2022; 14:1347-1362. [PMID: 35014999 DOI: 10.1039/d1nr07145a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Synthesizing efficient electrode materials for water splitting and supercapacitors is essential for developing clean electrochemical energy conversion/storage devices. In the present work, we report the construction of a ruthenium cobalt oxide (RuCo2O4)/Ti3C2Tx MXene hybrid by electrophoretic deposition of Ti3C2Tx MXene on nickel foam (NF) followed by RuCo2O4 nanostructure growth through an electrodeposition process. Owing to the strong interactions between RuCo2O4 and Ti3C2Tx sheets, which are verified by density functional theory (DFT)-based simulations, RuCo2O4/Ti3C2Tx MXene@NF can serve as a bifunctional electrode for both water splitting and supercapacitor applications. This electrode exhibits outstanding electrocatalytic activity with low overpotentials of 170 and 68 mV at 100 A m-2 toward the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The RuCo2O4/Ti3C2Tx MXene@NF-based alkaline water-splitting cell only requires 1.62 V to achieve a current density of 100 A m-2, which is much better than that of RuO2@NF and Pt/C@NF-assembled cells (1.75 V@100 A m-2). The symmetric supercapacitor (SSC)-assembled electrode displays a high specific capacitance of 229 F g-1 at 3 A g-1. The experimental results, complemented with theoretical insights, provide an effective strategy to prepare multifunctional materials for electrocatalysis and energy storage applications.
Collapse
Affiliation(s)
- Parvin Asen
- Department of Physics, Sharif University of Technology, Azadi Street, 11365-9161, Tehran, Iran.
| | - Ali Esfandiar
- Department of Physics, Sharif University of Technology, Azadi Street, 11365-9161, Tehran, Iran.
| | - Hamid Mehdipour
- Faculty of Physics, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Guo W, Tian Y, Wang S, Li J. Co2P wrapped Co3O4 grass-like nanowires for improved electrochemical performance in supercapacitors. CHEMICAL ENGINEERING SCIENCE: X 2021. [DOI: 10.1016/j.cesx.2021.100114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
7
|
Ji P, Wan J, Lu J, Zhang D, Hu C, Xi Y. Zn induced NiCo composites modified by carbon materials as a battery-type electrode material for high-performance supercapacitors. NANOTECHNOLOGY 2021; 32:495603. [PMID: 34438386 DOI: 10.1088/1361-6528/ac218e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
The development of simple preparation and excellent capacity performance electrode materials is the key to energy conversion and storage for supercapacitors. Based on the growth mechanism of crystal, Zn induced NiCo nanosheets and nanoneedles composite structure deposed on Ni foam (ZNC) are successfully attained by a facile one-step method, the growth mechanism of the composite structure is further discussed. Because of its unique composites structure and additional modification of carbon, the carbon modified ZNC (ZNC@C) delivers better energy storage ability (2280 mC cm-2at 2 mA cm-2) compare to ZNC. An asymmetric supercapacitor (ASC) is assembled by ZNC@C as the positive electrode and carbonized popcorn as the negative electrode. The ASC exhibits good energy storage performance. Zn also positively affects the adsorption energy to enhance the capacitance property based on Density Functional theory calculation. The simple method for the composite structure by tuning the kinetics behaver of the crystal can provide a new strategy in synthesizing the materials, and the material with a unique structure and high performance will have potential applications in the field of energy storage.
Collapse
Affiliation(s)
- Peiyuan Ji
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Department of Applied Physics, Chongqing University, Chongqing 400044, People's Republic of China
| | - Jing Wan
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Department of Applied Physics, Chongqing University, Chongqing 400044, People's Republic of China
| | - Junlin Lu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Department of Applied Physics, Chongqing University, Chongqing 400044, People's Republic of China
| | - Dazhi Zhang
- Department of Automotive Engineering, State Key Laboratory of Power Transmission Equipment & System Security and New Technology, Chongqing University, Chongqing 400044, People's Republic of China
| | - Chenguo Hu
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Department of Applied Physics, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yi Xi
- Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, Department of Applied Physics, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
8
|
Wang C, Song Z, Shi P, Lv L, Wan H, Tao L, Zhang J, Wang H, Wang H. High-rate transition metal-based cathode materials for battery-supercapacitor hybrid devices. NANOSCALE ADVANCES 2021; 3:5222-5239. [PMID: 36132631 PMCID: PMC9418927 DOI: 10.1039/d1na00523e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/30/2021] [Indexed: 05/14/2023]
Abstract
With the rapid development of portable electronic devices, electric vehicles and large-scale grid energy storage devices, there is a need to enhance the specific energy density and specific power density of related electrochemical devices to meet the fast-growing requirements of energy storage. Battery-supercapacitor hybrid devices (BSHDs), combining the high-energy-density feature of batteries and the high-power-density properties of supercapacitors, have attracted mass attention in terms of energy storage. However, the electrochemical performances of cathode materials for BSHDs are severely limited by poor electrical conductivity and ion transport kinetics. As the rich redox reactions induced by transition metal compounds are able to offer high specific capacity, they are an ideal choice of cathode materials. Therefore, this paper reviews the currently advanced progress of transition metal compound-based cathodes with high-rate performance in BSHDs. We discuss some efficient strategies of enhancing the rate performance of transition metal compounds, including developing intrinsic electrode materials with high conductivity and fast ion transport; modifying materials, such as inserting defects and doping; building composite structures and 3D nano-array structures; interfacial engineering and catalytic effects. Finally, some suggestions are proposed for the potential development of cathodes for BSHDs, which may provide a reference for significant progress in the future.
Collapse
Affiliation(s)
- Cong Wang
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Zehao Song
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Pei Shi
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Lin Lv
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Houzhao Wan
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Li Tao
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Jun Zhang
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Hanbin Wang
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| | - Hao Wang
- Hubei Yangtze Memory Labs, School of Microelectronics, Hubei University Wuhan 430000 PR China
| |
Collapse
|
9
|
Saleh AA, Ahmed N, Biby AH, Allam NK. Supercapattery electrode materials by Design: Plasma-induced defect engineering of bimetallic oxyphosphides for energy storage. J Colloid Interface Sci 2021; 603:478-490. [PMID: 34216948 DOI: 10.1016/j.jcis.2021.06.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 11/30/2022]
Abstract
Although transition metal hydroxides are promising candidates as advanced supercapattery materials, they suffer from poor electrical conductivity. In this regard, previous studies have typically analyzed separately the impacts of defect engineering at the atomic level and the conversion of hydroxides to phosphides on conductivity and the overall electrochemical performance. Meanwhile, this paper uniquely studies the aforementioned methodologies simultaneously inside an all-in-one simple plasma treatment for nickel cobalt carbonate hydroxide, examines the effect of altering the nickel-to-cobalt ratio in the binder-free defect-engineered bimetallic Ni-Co system, and estimates the respective quantum capacitance. Results show that the concurrent defect-engineering and phosphidation of nickel cobalt carbonate hydroxide boost the amount of effective redox and adsorption sites and increase the conductivity and the operating potential window. The electrodes exhibit ultra-high-capacity of 1462 C g-1, which is among the highest reported for a nickel-cobalt phosphide/phosphate system. Besides, a hybrid supercapacitor device was fabricated that can deliver an energy density of 48 Wh kg-1 at a power density of 800 W kg-1, along with an outstanding cycling performance, using the best performing electrode as the positive electrode and graphene hydrogel as the negative electrode. These results outperform most Ni-Co-based materials, demonstrating that plasma-assisted defect-engineered Ni-Co-P/POx is a promising material for use to assemble efficient energy storage devices.
Collapse
Affiliation(s)
- Amina A Saleh
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nashaat Ahmed
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ahmed H Biby
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt.
| |
Collapse
|
10
|
Xing H, He W, Liu Y, Long G, Sun Y, Feng J, Feng W, Zhou Y, Zong Y, Li X, Zhu X, Zheng X. Ultrathin and Highly Crumpled/Porous CoP Nanosheet Arrays Anchored on Graphene Boosts the Capacitance and Their Synergistic Effect toward High-Performance Battery-Type Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26373-26383. [PMID: 34043313 DOI: 10.1021/acsami.1c04921] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Constructing novel electrode materials with supernal specific capacitance and cycle stability is important for the practical applications of supercapacitors. Herein, ultrathin and highly crumpled CoP/reduced graphene oxide (rGO) nanosheet arrays are grown on nickel foam (NF) through a hydrothermal-phosphidation route. Benefitting from the synergistic effects of CoP with large specific capacity and rGO with high conductivity and ultrathin nanosheet arrays structure, CoP/rGO shows extraordinary electrochemical performance. The CoP/rGO electrode possesses a superior specific capacity of 1438.0 C g-1 (3595.0 F g-1) at 1 A g-1, which is 3.43, 2.05, and 2.26 times larger than those of Co(OH)2/rGO, Co3O4/rGO, and bare CoP. In particular, the CoP/rGO nanosheet arrays show the highest specific capacities among the monometallic phosphide-based nanostructures reported so far. The CoP/rGO retains 1198.9 C g-1 (2997.2 F g-1) at 10 A g-1, revealing the outstanding rate capability of 83%. Theoretical calculations reveal that rGO can adequately reduce the absorption energy of OH- on CoP, which makes CoP/rGO have strong adsorption capacity of OH-, resulting in boosting electrochemical performance. A hybrid supercapacitor of CoP/rGO/NF//AC was designed, which presents a superior energy density of 43.2 Wh kg-1 at a power density of 1010.5 W kg-1. After 10 000 cycles, the CoP/rGO/NF//AC supercapacitor reveals excellent cycling durability with a capacitance retention of 89%. This work provides a new insight into the design of high-performance electrode materials by combining high capacitive metal phosphides with conductive carbon, which is of great significance for energy storage systems.
Collapse
Affiliation(s)
- Hongna Xing
- School of Physics, Northwest University, Xi'an 710069, China
| | - Weijun He
- School of Physics, Northwest University, Xi'an 710069, China
| | - Yibo Liu
- School of Physics, Northwest University, Xi'an 710069, China
- State Key Laboratory of Photon Technology in Western China Energy, Northwest University, Xi'an 710069, China
| | - Guankui Long
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, China
| | - Yong Sun
- School of Physics, Northwest University, Xi'an 710069, China
| | - Juan Feng
- School of Physics, Northwest University, Xi'an 710069, China
| | - Wei Feng
- School of Physics, Northwest University, Xi'an 710069, China
| | - You Zhou
- School of Physics, Northwest University, Xi'an 710069, China
| | - Yan Zong
- School of Physics, Northwest University, Xi'an 710069, China
| | - Xinghua Li
- School of Physics, Northwest University, Xi'an 710069, China
- State Key Laboratory of Photon Technology in Western China Energy, Northwest University, Xi'an 710069, China
| | - Xiuhong Zhu
- School of Physics, Northwest University, Xi'an 710069, China
| | - Xinliang Zheng
- School of Physics, Northwest University, Xi'an 710069, China
| |
Collapse
|
11
|
Huang S, Shi XR, Sun C, Duan Z, Ma P, Xu S. The Application of Metal-Organic Frameworks and Their Derivatives for Supercapacitors. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E2268. [PMID: 33207732 PMCID: PMC7696577 DOI: 10.3390/nano10112268] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/03/2020] [Accepted: 11/12/2020] [Indexed: 02/03/2023]
Abstract
Supercapacitors (SCs), one of the most popular types of energy-storage devices, present lots of advantages, such as large power density and fast charge/discharge capability. Being the promising SCs electrode materials, metal-organic frameworks (MOFs) and their derivatives have gained ever-increasing attention due to their large specific surface area, controllable porous structure and rich diversity. Herein, the recent development of MOFs-based materials and their application in SCs as the electrode are reviewed and summarized. The preparation method, the morphology of the materials and the electrical performance of various MOFs and their derivatives (such as carbon, metal oxide/hydroxide and metal sulfide) are briefly discussed. Most of recent works concentrate on Ni-, Co- and Mn-MOFs and their composites/derivatives. Conclusions and our outlook for the researches are also given, which would be a valuable guideline for the rational design of MOFs materials for SCs in the near future.
Collapse
Affiliation(s)
- Simin Huang
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Xue-Rong Shi
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
- Institute of Physical Chemistry, University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria
| | - Chunyan Sun
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Zhichang Duan
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Pan Ma
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| | - Shusheng Xu
- School of Material Engineering, Shanghai University of Engineering Science, 333 Longteng Road, Songjiang District, Shanghai 201620, China; (S.H.); (C.S.); (Z.D.); (P.M.)
| |
Collapse
|
12
|
Shinde PA, Khan MF, Rehman MA, Jung E, Pham QN, Won Y, Jun SC. Nitrogen-doped carbon integrated nickel–cobalt metal phosphide marigold flowers as a high capacity electrode for hybrid supercapacitors. CrystEngComm 2020. [DOI: 10.1039/d0ce01006e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The fabrication of advanced MOF-derived multicomponent NiCoP/NC marigold flowers electrode for high-performance hybrid supercapacitors.
Collapse
Affiliation(s)
- Pragati A. Shinde
- Nano-Electro Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | | | - Malik A. Rehman
- Nano-Electro Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | - Euigeol Jung
- Nano-Electro Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| | - Quang N. Pham
- Department of Mechanical and Aerospace Engineering
- University of California Irvine
- Irvine
- USA
| | - Yoonjin Won
- Department of Mechanical and Aerospace Engineering
- University of California Irvine
- Irvine
- USA
| | - Seong Chan Jun
- Nano-Electro Mechanical Device Laboratory
- School of Mechanical Engineering
- Yonsei University
- Seoul 120-749
- South Korea
| |
Collapse
|