1
|
Lan Z, Ma L, Yu Y, Qing J, Meng T, Zhou W, Xu Z, Chen ML, Wen L, Cheng Y, Wang L, Ding L. Enhanced solid-liquid synergistic microextraction of nine bisphenols in serum using polyaniline functionalized metal-organic framework nanocomposites/methyl tert-butyl ether. Anal Bioanal Chem 2025; 417:1619-1634. [PMID: 39890622 DOI: 10.1007/s00216-025-05752-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 02/03/2025]
Abstract
Bisphenols, as a new class of environmental endocrine disruptors (EED), can interfere with the endocrine system of the human body and lead to various diseases. In this study, a novel polyaniline functionalized metal-organic framework (PANI@MIL-101@HF) was synthesized by utilizing hollow fibers (HF) as the the immobilization carrier, and combined with methyl tert-butyl ether (MTBE) for solid-liquid cooperative adsorption to determine bisphenols (BPs) in serum samples. The immobilized adsorbent exhibited excellent high stability and hydrophobicity. Furthermore, the inclusion of amino and benzene rings in PANI enhanced the adsorption efficiency of BPs through π-π and hydrogen bond interactions. Surprisingly, owing to the synergies of size exclusion effect of the MIL-101 and HF, the exclusion rate of protein reached as high as 99.2-99.9%. Based on its excellent adsorption properties and protein exclusion effect, the immobilized adsorbent PANI@MIL-101@HF was successfully used as a new restricted material for the high extraction performance with solid-liquid synergy of nine bisphenols (BPs) in serum samples. The operation process has also become more convenient without centrifuging. Integrated with ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), the nine BPs in serum samples have a wide linear range (2-200 ng mL-1) with low quantitative limits of 0.02 ng mL-1, and the recoveries ranged from 84.65 to 112.56%. The proposed method could be widely applied in convenient, green, and sensitive detection of endocrine disruptors from serum samples.
Collapse
Affiliation(s)
- Zirong Lan
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Linlin Ma
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Yanjun Yu
- Technical Center, Tianjin Customs, Tianjin, 300041, P. R. China
| | - Jiang Qing
- Technical Center for Industrial Product and Raw Material Inspection and Testing, Shanghai Customs, Shanghai, 200135, China
| | - Taoyu Meng
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha, 410000, P. R. China
| | - Wenli Zhou
- Changsha Harmony Health Medical Laboratory Co., Ltd, Changsha, 410000, P. R. China
| | - Zhou Xu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Mao Long Chen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China
| | - Libing Wang
- Technical Center, Tianjin Customs, Tianjin, 300041, P. R. China.
| | - Li Ding
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha, 410114, P. R. China.
| |
Collapse
|
2
|
Jing Y, Meng F, Wang F, Liu L. A Fabrication Strategy for Durable Slippery Organic Coating toward Antifouling and Anticorrosion via Digital Light Processing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:4009-4021. [PMID: 39746879 DOI: 10.1021/acsami.4c19298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The slippery liquid-infused porous surfaces (SLIPS) have recently attracted significant interest in marine antifouling and corrosion protection. Nevertheless, the insufficient durability and corrosion resistance of SLIPS considerably affect their application potential. In this work, a preparation strategy for ultradurable slippery organic coating was proposed to combat biofouling and corrosion. Digital light processing (DLP) was first employed to fabricate organic protective coatings with gradient porous structures to improve the stability and durability of the SLIPS. The structure with a smaller pore size in the upper segment relative to the basal area was designed to concurrently enhance the lubricant's storage and retention capabilities. The antifouling experiment demonstrated excellent antifouling performance, with a bacterial colonization of merely 2.08% after immersion in a Pseudomonas aeruginosa solution for 28 days. The antialgae assessment demonstrated that the surface antifouling efficacy of the gradient SLIPS coating was enhanced by 99.75% after a 10-day immersion period. The EIS results indicated that the SLIPS coating with a gradient porous structure exhibited remarkable corrosion resistance, as evidenced by a |Z|0.01 Hz value of 2.93 × 1010 Ω·cm2 after 60 days of immersion. The gradient porous structure effectively resolves the intrinsic dilemma between the storage and depletion of lubricant, which greatly improves the stability and durability of the SLIPS coating. The ultradurable slippery organic coating with facile preparation and controllable structure exhibits exceptional long-term antifouling and anticorrosion properties, thereby making it highly promising for potential application.
Collapse
Affiliation(s)
- Yuan Jing
- Corrosion and Protection Center, Northeastern University, Shenyang 110819, PR China
| | - Fandi Meng
- Corrosion and Protection Center, Northeastern University, Shenyang 110819, PR China
| | - Fuhui Wang
- Corrosion and Protection Center, Northeastern University, Shenyang 110819, PR China
| | - Li Liu
- Corrosion and Protection Center, Northeastern University, Shenyang 110819, PR China
| |
Collapse
|
3
|
Wang W, Yang K, Zhu Q, Zhang T, Guo L, Hu F, Zhong R, Wen X, Wang H, Qi J. MOFs-Based Materials with Confined Space: Opportunities and Challenges for Energy and Catalytic Conversion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311449. [PMID: 38738782 DOI: 10.1002/smll.202311449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Metal-Organic Frameworks (MOFs) are a very promising material in the fields of energy and catalysis due to their rich active sites, tunable pore size, structural adaptability, and high specific surface area. The concepts of "carbon peak" and "carbon neutrality" have opened up huge development opportunities in the fields of energy storage, energy conversion, and catalysis, and have made significant progress and breakthroughs. In recent years, people have shown great interest in the development of MOFs materials and their applications in the above research fields. This review introduces the design strategies and latest progress of MOFs are included based on their structures such as core-shell, yolk-shell, multi-shelled, sandwich structures, unique crystal surface exposures, and MOF-derived nanomaterials in detail. This work comprehensively and systematically reviews the applications of MOF-based materials in energy and catalysis and reviews the research progress of MOF materials for atmospheric water harvesting, seawater uranium extraction, and triboelectric nanogenerators. Finally, this review looks forward to the challenges and opportunities of controlling the synthesis of MOFs through low-cost, improved conductivity, high-temperature heat resistance, and integration with machine learning. This review provides useful references for promoting the application of MOFs-based materials in the aforementioned fields.
Collapse
Affiliation(s)
- Wei Wang
- School of Materials Science and Engineering, Northeastern University, Shenyang, Liaoning, 110819, China
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ke Yang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Qinghan Zhu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Tingting Zhang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Li Guo
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Feiyang Hu
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Ruixia Zhong
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Xiaojing Wen
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Haiwang Wang
- Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, China
| | - Jian Qi
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
4
|
Hassani F, Aroujalian A, Rashidi A. Robust and stable superhydrophilic MIL-101 (Cr)-coated copper mesh for highly efficient oil/water emulsion separation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30663-30675. [PMID: 38613752 DOI: 10.1007/s11356-024-32978-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 03/14/2024] [Indexed: 04/15/2024]
Abstract
In this study, dip coating method was investigated to prepare superhydrophilic MIL-101 (Cr)-coated copper mesh for highly efficient oil/water emulsion separation. To increase the surface area of synthesized MIL-101 (Cr), a purification procedure was developed to remove unreacted H2BDC crystals present in the channel of the initial MIL-101 (Cr) sample synthesized. After that, a dispersing solution of MIL-101 (Cr) was needed to coat on the copper mesh. Thermoplastic polyurethane (TPU) was used as a binder in this procedure. The prepared membranes of M1 (once coated mesh) to M6 (six times coated mesh) were performed to separate oil/water emulsion effectively. Contact angle tests showed the superhydrophilic/underwater superoleophobic wettability behavior of MIL-101 (Cr)-coated copper meshes. The wetting mechanism of the prepared membranes is mostly relevant to the surface functional groups of purified MIL-101 (Cr). Also, the roughness of the nanostructured coated membranes was improved because of the uniform coating of MIL-101 (Cr) which is integrated into hydrophilic TPU. Oil/water separation results showed that M2 (twice coated mesh) showed the maximum amount of water flux (83076 L m-2 h-1) in oil/water separation and M3 (three times coated mesh) had the best performance of oil/water emulsion with 99.99% separation efficiency.
Collapse
Affiliation(s)
- Fatemeh Hassani
- Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Abdolreza Aroujalian
- Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran.
| | - Alimorad Rashidi
- Nanotechnology Research Center, Research Institute of Petroleum Industry (RIPI), Tehran, Iran
| |
Collapse
|
5
|
Ghaderi M, Bi H, Dam-Johansen K. Advanced materials for smart protective coatings: Unleashing the potential of metal/covalent organic frameworks, 2D nanomaterials and carbonaceous structures. Adv Colloid Interface Sci 2024; 323:103055. [PMID: 38091691 DOI: 10.1016/j.cis.2023.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
The detrimental impact of corrosion on metallic materials remains a pressing concern across industries. Recently, intelligent anti-corrosive coatings for safeguarding metal infrastructures have garnered significant interest. These coatings are equipped with micro/nano carriers that store corrosion inhibitors and release them when triggered by external stimuli. These advanced coatings have the capability to elevate the electrochemical impedance values of steel by 2-3 orders of magnitude compared to the blank coating. However, achieving intelligent, durable, and reliable anti-corrosive coatings requires careful consideration in the design of these micro/nano carriers. This review paper primarily focuses on investigating the corrosion inhibition mechanism of various nano/micro carriers/barriers and identifying the challenges associated with using them for achieving desired properties in anti-corrosive coatings. Furthermore, the fundamental aspects required for nano/micro carriers, including compatibility with the coating matrix, high specific surface area, stability in different environments, stimuli-responsive behavior, and facile synthesis were investigated. To achieve this aim, we explored the properties of micro/nanocarriers based on oxide nanoparticles, carbonaceous and two-dimensional (2D) nanomaterials. Finally, we reviewed recent literature on the application of state-of the art nanocarriers based on metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). We believe that the outcomes of this review paper offer valuable insights for researchers in selecting appropriate materials that can effectively enhance the corrosion resistance of coatings.
Collapse
Affiliation(s)
- Mohammad Ghaderi
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark
| | - Huichao Bi
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark.
| | - Kim Dam-Johansen
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
6
|
Al Kiey SA, El-Shahat M, Abdelhameed RM. Role of different metal precursors based MOFs for boosting anti-corrosion performance of mild steel in acid media. MATERIALS TODAY SUSTAINABILITY 2023; 23:100460. [DOI: 10.1016/j.mtsust.2023.100460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
7
|
Liu X, Wu Z, Lyu Y, Li T, Yang H, Liu Y, Liu R, Xie X, Lyu K, Shah SP. Corrosion Resistance of CeO 2-GO/Epoxy Nanocomposite Coating in Simulated Seawater and Concrete Pore Solutions. Polymers (Basel) 2023; 15:2602. [PMID: 37376248 DOI: 10.3390/polym15122602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Reinforced concrete structures in the marine environment face serious corrosion risks. Coating protection and adding corrosion inhibitors are the most economical and effective methods. In this study, a nano-composite anti-corrosion filler with a mass ratio of CeO2:GO = 4:1 was prepared by hydrothermally growing cerium oxide on the surface of graphene oxide. The filler was mixed with pure epoxy resin at a mass fraction of 0.5% to prepare a nano-composite epoxy coating. The basic properties of the prepared coating were evaluated from the aspects of surface hardness, adhesion grade, and anti-corrosion performance on Q235 low carbon steel subjected to simulated seawater and simulated concrete pore solutions. Results showed that after 90 days of service, the corrosion current density of the nanocomposite coating mixed with corrosion inhibitor was the lowest (Icorr = 1.001 × 10-9 A/cm2), and the protection efficiency was up to 99.92%. This study provides a theoretical foundation for solving the corrosion problem of Q235 low carbon steel in the marine environment.
Collapse
Affiliation(s)
- Xiaoyan Liu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
- Institute of Corrosion Protection, Hohai University, Nanjing 210098, China
| | - Zitao Wu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Yaoyao Lyu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Tianyu Li
- Institute of Corrosion Protection, Hohai University, Nanjing 210098, China
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing 210098, China
| | - Heng Yang
- Materials & Structural Engineering Department, Nanjing Hydraulic Research Institute, Nanjing 210024, China
| | - Yanqi Liu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Ruidan Liu
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Xian Xie
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Kai Lyu
- College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
| | - Surendra P Shah
- Department of Civil Engineering, The University of Texas at Arlington, 701 S. Nedderman Drive, Arlington, TX 76019, USA
| |
Collapse
|
8
|
Qi Z, Chen J, Chen J, Qiu T, Ye C. Studies on the Stability and Deactivation Mechanism of Immobilized Ionic Liquids in Catalytic Esterification Reactions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:851-861. [PMID: 36599647 DOI: 10.1021/acs.langmuir.2c02937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Solid-supported ionic liquid catalysts (SILs) are the simplest form of a heterogenized ionic liquid and have attracted soaring attention because of the high catalytic activity as well as separation. Unfortunately, instability severely hinders their practical application, and the reason for the deactivation of SILs has not been investigated in detail. In the present study, the immobilized ionic liquid catalysts MIL-101-[IA-SO3H][HSO4] and MIL-101-[IA-COOH][HSO4] were prepared and used to study the stability in the esterification reaction. The results show that compared with MIL-101-[IA-COOH][HSO4], MIL-101-[IA-SO3H][HSO4] has a higher catalytic activity and a lower stability. The deactivation mechanism is discussed based on experiments and theoretical analysis: the protons on -SO3H dissociate in a polar solvent and combine with anion HSO4-, and then, the formative H2SO4 molecule will leach out into the solvent. Our discussion indicates that the stability of immobilized ionic liquids is determined by the substituents of ionic liquid cations and becomes the significant factor controlling the stability limits. The study presented here would be important for understanding the deactivation reason and can help in choosing the suitable cation to avoid leaching of the active site during the reaction.
Collapse
Affiliation(s)
- Zhaoyang Qi
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, P. R. China
| | - Jinyi Chen
- Institute of Process Engineering, Chinese Academy of Sciences, Beijing100190, P. R. China
| | - Jie Chen
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, P. R. China
| | - Ting Qiu
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, P. R. China
| | - Changshen Ye
- College of Chemical Engineering, Fuzhou University, Fuzhou350108, P. R. China
- Qingyuan Innovation Laboratory, Quanzhou362801, P. R. China
| |
Collapse
|
9
|
Feng J, Chen J, Wang S, Jia M, Zhang Z, Yu T, Xue M. Rational Design of Inhibitor-Encapsulated Bio-MOF-1 for Dual Corrosion Protection. Inorg Chem 2022; 61:18285-18292. [DOI: 10.1021/acs.inorgchem.2c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jinhua Feng
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Junnan Chen
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Shuchang Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Miaomiao Jia
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Zhiyu Zhang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Tongwen Yu
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| | - Ming Xue
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai519082, China
| |
Collapse
|
10
|
Cui J, Huang L, Ma J, Li Y, Yuan Y. Carbon-encapsulated core-shell structure ZnFe 2O 4 sphere composites coupled with excellent microwave absorption and corrosion resistance. NANOSCALE 2022; 14:15393-15403. [PMID: 36218187 DOI: 10.1039/d2nr04333e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microwave absorbing materials (MAMs) have been identified as an efficient means to solve major electromagnetic pollution problems. Current core-shell composite MAMs are fabricated as single magnetic cores with dielectric shells, yielding decreased magnetic couplings and impedance mismatches. Herein, carbon shell encapsulated core-shell structured zinc ferrate (ZnFe2O4) sphere composites (CSZF@C) were fabricated using a hydrothermal method and subsequent carbonisation process. The complex permittivity and complex permeability of CSZF@C can be effectively adjusted by varying the parameters of the outer carbon shell. The synergistic effect of carbon shell and inner core-shell structured ZnFe2O4 (CSZF) not only meets impedance matching but also improves electromagnetic energy loss, a result of the unique microstructure. CSZF@C-1 exhibited a considerable reflection loss (RL) of -53.5 dB and an effective absorption bandwidth (EAB) of up to 6.56 GHz, the thickness is only 2.94 mm. Meanwhile, the epoxy resin coating of CSZF@C-1 substantially increases the corrosion resistance of the metal substrate owing to carbon encapsulation. This study presents new ideas for designing efficient multifunctional nanocomposites with high microwave absorption and corrosion resistance.
Collapse
Affiliation(s)
- Jin Cui
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China.
| | - Li Huang
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China.
| | - Jingwei Ma
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China.
| | - Yibin Li
- School of Materials Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
| | - Ye Yuan
- Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, School of Materials Science and Technology, Hebei University of Technology, Tianjin 300130, People's Republic of China.
- School of Materials Science and Engineering, Beihang University, Beijing 100191, People's Republic of China
| |
Collapse
|
11
|
Lan Y, Yan M, Yu H, Li M, Yeh J. Beads‐milling
of waste Si sawdust into micro‐flakes and applied in
UV
‐curable polystyrene composites for anticorrosion coatings. J Appl Polym Sci 2022. [DOI: 10.1002/app.53220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yun‐Xiang Lan
- Department of Chemistry and Center for Nanotechnology Chung Yuan Christian University Tao‐Yuan Taiwan Republic of China
| | - Minsi Yan
- Department of Chemistry and Center for Nanotechnology Chung Yuan Christian University Tao‐Yuan Taiwan Republic of China
| | - Hsin‐Kai Yu
- Department of Chemistry and Center for Nanotechnology Chung Yuan Christian University Tao‐Yuan Taiwan Republic of China
| | - Min‐Xue Li
- Department of Chemistry and Center for Nanotechnology Chung Yuan Christian University Tao‐Yuan Taiwan Republic of China
| | - Jui‐Ming Yeh
- Department of Chemistry and Center for Nanotechnology Chung Yuan Christian University Tao‐Yuan Taiwan Republic of China
| |
Collapse
|
12
|
Sun P, Xie M, Zhang L, Liu J, Wu J, Li D, Yuan S, Wu T, Li D. Ultrastable Anti‐Acid “Shield” in Layered Silver Coordination Polymers. Angew Chem Int Ed Engl 2022; 61:e202209971. [DOI: 10.1002/anie.202209971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Peipei Sun
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
- School of Energy Materials and Chemical Engineering Hefei University Hefei 230601 China
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Mo Xie
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
| | - Lin‐Mei Zhang
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
| | - Jia‐Xing Liu
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
| | - Jin Wu
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Dong‐Sheng Li
- College of Materials and Chemical Engineering Hubei Provincial Collaborative Innovation Center for New Energy Microgrid Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials China Three Gorges University Yichang 443002 China
| | - Shang‐Fu Yuan
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
| | - Tao Wu
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
- College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China
| | - Dan Li
- College of Chemistry and Materials Science Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications Jinan University Guangzhou 510632 China
| |
Collapse
|
13
|
Sun P, Xie M, Zhang LM, Liu JX, Wu J, Li DS, Yuan SF, Wu T, Li D. Ultrastable Anti‐Acid "Shield" in Layered Silver Coordination Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Peipei Sun
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| | - Mo Xie
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| | - Lin-Mei Zhang
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| | - Jia-Xing Liu
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| | - Jin Wu
- Soochow University College of Chemistry, Chemical Engineering and Materials Science No 199 Ren'ai Road 215123 Suzhou CHINA
| | - Dong-Sheng Li
- China Three Gorges University College of Materials and Chemical Engineering CHINA
| | - Shang-Fu Yuan
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| | - Tao Wu
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| | - Dan Li
- Jinan University College of Chemistry and Materials Science 601 Huangpu Road West 510632 Guangzhou CHINA
| |
Collapse
|
14
|
Chen X, Hong R, Chen H. Fabrication of PTCA-PANI composites for electromagnetic wave absorption and corrosion protection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
AhadiParsa M, Dehghani A, Ramezanzadeh M, Ramezanzadeh B. Rising of MXenes: Novel 2D-functionalized nanomaterials as a new milestone in corrosion science - a critical review. Adv Colloid Interface Sci 2022; 307:102730. [PMID: 35868175 DOI: 10.1016/j.cis.2022.102730] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/01/2022]
Abstract
Corrosion is a natural process between a metal and its environment that can gradually cause catastrophic damage to the metal equipment, which would have economic implications. Consequently, several protective methods have been utilized to prevent metals from severe degradation. Organic polymeric coatings have been widely used as the most convenient and cost-effective method to boost metals' anti-corrosion properties. Nonetheless, these coatings have a significant amount of solvent, resulting in shrinkage and micro defects in the films during the curing process. Many studies have verified that transition metal carbides/nitrides (MXenes) can form a "labyrinth effect" in the polymeric coatings due to their "nano-barrier effect". Furthermore, based on their sheet-like structures, they can considerably cover the surface defects of the polymeric films. Therefore, the penetration of corrosive elements can be substantially curbed. It is the first review that specifically focused on the new family of 2D nanomaterials, i.e., MXenes, and discussed their applications in corrosion protection systems. The MXenes' pros and cons in the polymeric matrixes as nanofillers will be clarified. Moreover, the synthesis and functionalization methods of the MXenes, their applications, and corrosion protection mechanism will be explored. Subsequently, the MXenes' superiority over other 2D nanomaterials will be highlighted while their future perspectives and industrial applications will be predicted.
Collapse
Affiliation(s)
- Mobina AhadiParsa
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Ali Dehghani
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran; Department of Chemical Engineering, Faculty of Engineering, Golestan University, Aliabad Katoul, Iran
| | - Mohammad Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran
| | - Bahram Ramezanzadeh
- Department of Surface Coatings and Corrosion, Institute for Color Science and Technology, P.O. Box 16765-654, Tehran, Iran.
| |
Collapse
|
16
|
Zhou C, Pan M, Li S, Sun Y, Zhang H, Luo X, Liu Y, Zeng H. Metal organic frameworks (MOFs) as multifunctional nanoplatform for anticorrosion surfaces and coatings. Adv Colloid Interface Sci 2022; 305:102707. [PMID: 35640314 DOI: 10.1016/j.cis.2022.102707] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 11/18/2022]
Abstract
Corrosion of metallic materials is a long-standing problem in many engineering fields. Various organic coatings have been widely applied in anticorrosion of metallic materials over the past decades. However, the protective performance of many organic coatings is limited due to the undesirable local failure of the coatings caused by micro-pores and cracks in the coating matrix. Recently, metal organic frameworks (MOFs)-based surfaces and coatings (MOFBSCs) have exhibited great potential in constructing protective materials on metallic substrates with efficient and durable anticorrosion performance. The tailorable porous structure, flexible composition, numerous active sites, and controllable release properties of MOFs make them an ideal platform for developing various protective functionalities, such as self-healing property, superhydrophobicity, and physical barrier against corrosion media. MOFs-based anticorrosion surfaces and coatings can be divided into two categories: the composite surfaces/coatings using MOFs-based passive/active nanofillers and the surfaces/coatings using MOFs as functional substrate support. In this work, the state-of-the-art fabrication strategies of the MOFBSCs are systematically reviewed. The anticorrosion mechanisms of MOFBSCs and functions of the MOFs in the coating matrix are discussed accordingly. Additionally, we highlight both traditional and emerging electrochemical techniques for probing protective performances and mechanisms of MOFBSCs. The remaining challenging issues and perspectives are also discussed.
Collapse
Affiliation(s)
- Chengliang Zhou
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China; Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Mingfei Pan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Sijia Li
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yongxiang Sun
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hongjian Zhang
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China; Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China
| | - Xiaohu Luo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China; School of Chemistry and Chemical Engineering, Qiannan Normal University for Nationalities, Duyun 558000, PR China.
| | - Yali Liu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China; Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, Hunan 410082, PR China.
| | - Hongbo Zeng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
17
|
Polyaniline Based Voltammetric and Potentiometric Sensors with Electrochemically-Influenced Ion-Discriminating Positions for Determination of Mercury(II). PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES 2022. [DOI: 10.1007/s40010-022-00789-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Chitosan biomolecules-modified graphene oxide nano-layers decorated by mesoporous ZIF-9 nanocrystals for the construction of a smart/pH-triggered anti-corrosion coating system. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Zhang Y, Wang J, Zhao S, Serdechnova M, Blawert C, Wang H, Zheludkevich ML, Chen F. Double-Ligand Strategy to Construct an Inhibitor-Loaded Zn-MOF and Its Corrosion Protection Ability for Aluminum Alloy 2A12. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51685-51694. [PMID: 34670367 DOI: 10.1021/acsami.1c13738] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A promising double-ligand strategy for the delivery of active corrosion inhibitors by a Zn(II)-based metal-organic framework (Zn-MOF) is developed. Zn-MOF compounds were synthesized by a facile one-pot solvothermal method and characterized. The Zn-MOF is based on the corrosion inhibitor benzotriazole (BTA) and 2,5-furandicarboxylic acid (H2FDA) ligand, which is a promising renewable building block alternative to terephthalic or isophthalic acid. The crystal structure and morphology are characterized by single-crystal X-ray diffraction analysis, powder X-ray diffraction analysis (PXRD), Fourier transform infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). The synthesized MOF crystallites are in the trigonal space group R3c with the cell parameters in a three-dimensional (3D) anionic framework. Their ability to inhibit the corrosion process of aluminum alloy 2A12 in NaCl solution was also evaluated by immersion tests in solutions with and without a MOF. The postcorrosion analysis was performed by SEM and X-ray photoelectron spectroscopy (XPS). Additional information about the inhibition efficiency was obtained by electrochemical impedance spectroscopy (EIS). The results suggest that the as-synthesized MOF can release the inhibitors and form protective layers effectively on the surface of the aluminum alloy. The use of inhibitor-loaded MOF nanocontainers provides promising opportunities for the smart delivery of inhibitors and effective corrosion protection of 2A12 aluminum alloys.
Collapse
Affiliation(s)
- You Zhang
- College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Juping Wang
- College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Shuai Zhao
- College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Maria Serdechnova
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Carsten Blawert
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Hao Wang
- College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| | - Mikhail L Zheludkevich
- Institute of Surface Science, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
- Faculty of Engineering, Kiel University, Kiel 24143, Germany
| | - Fei Chen
- College of New Materials and Chemical Engineering, Beijing Key Lab of Special Elastomeric Composite Materials, Beijing Institute of Petrochemical Technology, Beijing 102617, China
| |
Collapse
|
20
|
Wei R, Liu Z, Wei W, Liang C, Han G, Zhan L. Synthesis, Crystal Structure and Characterization of Two Cobalt (II) Complexes Based on Pyridine Carboxylic Acid Ligands. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202000418] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Runzhi Wei
- College of Chemical and Biological Engineering Guilin University of Technology Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials Guilin 541004
| | - Zheng Liu
- College of Chemical and Biological Engineering Guilin University of Technology Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials Guilin 541004
| | - Wenchang Wei
- College of Chemical and Biological Engineering Guilin University of Technology Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials Guilin 541004
| | - Chuxin Liang
- College of Chemical and Biological Engineering Guilin University of Technology Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials Guilin 541004
| | - Guo‐Cheng Han
- School of Life and Environmental Sciences Guilin University of Electronic Technology Guilin 541004
| | - Ling Zhan
- School of Life and Environmental Sciences Guilin University of Electronic Technology Guilin 541004
| |
Collapse
|
21
|
K N, Rout CS. Conducting polymers: a comprehensive review on recent advances in synthesis, properties and applications. RSC Adv 2021; 11:5659-5697. [PMID: 35686160 PMCID: PMC9133880 DOI: 10.1039/d0ra07800j] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 12/25/2020] [Indexed: 12/11/2022] Open
Abstract
Conducting polymers are extensively studied due to their outstanding properties, including tunable electrical property, optical and high mechanical properties, easy synthesis and effortless fabrication and high environmental stability over conventional inorganic materials. Although conducting polymers have a lot of limitations in their pristine form, hybridization with other materials overcomes these limitations. The synergetic effects of conducting polymer composites give them wide applications in electrical, electronics and optoelectronic fields. An in-depth analysis of composites of conducting polymers with carbonaceous materials, metal oxides, transition metals and transition metal dichalcogenides etc. is used to study them effectively. Here in this review we seek to describe the transport models which help to explain the conduction mechanism, relevant synthesis approaches, and physical properties, including electrical, optical and mechanical properties. Recent developments in their applications in the fields of energy storage, photocatalysis, anti-corrosion coatings, biomedical applications and sensing applications are also explained. Structural properties play an important role in the performance of the composites.
Collapse
Affiliation(s)
- Namsheer K
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus Jakkasandra, Ramanagaram Bangalore-562112 India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus Jakkasandra, Ramanagaram Bangalore-562112 India
| |
Collapse
|
22
|
Lashgari SM, Yari H, Mahdavian M, Ramezanzadeh B, Bahlakeh G, Ramezanzadeh M. Unique 2-methylimidazole based Inorganic Building Brick nano-particles (NPs) functionalized with 3-aminopropyltriethoxysilane with excellent controlled corrosion inhibitors delivery performance; Experimental coupled with molecular/DFT-D simulations. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.11.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
23
|
Xi FG, Sun W, Dong ZY, Yang NN, Gong T, Gao EQ. An in situ approach to functionalize metal–organic frameworks with tertiary aliphatic amino groups. Chem Commun (Camb) 2020; 56:13177-13180. [DOI: 10.1039/d0cc05568a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Tertiary aliphatic amino modified UiO-67/66(Zr), IRMOF-n(Zn) and MIL-101(Fe) were synthesized by a facile and efficient one-pot strategy under the corresponding metal catalysis.
Collapse
Affiliation(s)
- Fu-Gui Xi
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- P. R. China
| | - Wei Sun
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Zhi-yun Dong
- Department of Chemistry
- Xinzhou Teachers University
- Xinzhou
- P. R. China
| | - Ning-Ning Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - Teng Gong
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| | - En-Qing Gao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes
- College of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200062
- P. R. China
| |
Collapse
|