1
|
Xue Y, Li K, Shen Y, Miao S, Sang D, Chen W. Elucidating the enhanced charge storage mechanism in mechanically pretreated banana peel biochar: Endogenization of exogenous dopants onto lignocellulose for elevated O/N active sites. Int J Biol Macromol 2025; 312:143910. [PMID: 40350132 DOI: 10.1016/j.ijbiomac.2025.143910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/27/2025] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
In this study, an innovative endogenization technique for the endogenization of exogenous dopants in lignocellulose from banana biomass, namely mechanical ball milling (MBM) pretreatment, is employed for the efficient synthesis of highly dispersed nitrogen/oxygen-doped biochar electrodes. The endogenization effect of MBM on exogenous melamine/KHCO3 dopants (EMKDs) and its enhanced mechanism for storage performance are thoroughly investigated. Results show the MBM-pretreated biochar exhibits superior pseudocapacitive activity, energy density (26.26 Wh·kg-1) and lifespan stability of 10,000 cycles, far surpassing those pretreated by impregnation and stirring methods. The excellent properties are attributed to the MBM-induced uniformly dispersed active centers, greatly promoting the formation of honeycomb-like structure, graphitization, pyrrolic-N (55.02 %) and C=O (52.20 %). FTIR and XPS results confirm the high energy MBM process facilitates the cleavage of ether oxygen bonds, thereby enabling EMKDs to graft uniformly onto lignocellulose structure, and inducing more generation of highly dispersed specific N/O functional groups by further promotion of KHCO3-induced mediated sp2-C and π-π* at high temperature. Furthermore, both experimental and theoretical investigations confirm that pyrrolic-N and C=O as key pseudocapacitance active sites, with their synergistic effect significantly enhancing the redox reactivity, conductivity and pseudocapacitance. The findings offer an effective endogenization pretreatment strategy for high performance biochar electrode.
Collapse
Affiliation(s)
- Yan Xue
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Kunquan Li
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China.
| | - Yifeng Shen
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Shengsheng Miao
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Dazhi Sang
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Wei Chen
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| |
Collapse
|
2
|
Xie W, Wang E, Sun Q, Ouyang Z, Tian T, Zhao J, Xiao Y, Lei S, Cheng B. N-regulated three-dimensional turf-like carbon nanosheet loaded with FeCoNi nanoalloys as bifunctional electrocatalysts for durable zinc-air batteries. J Colloid Interface Sci 2024; 673:80-91. [PMID: 38875800 DOI: 10.1016/j.jcis.2024.06.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
N-regulated three-dimensional (3D) turf-like carbon material loaded with FeCoNi nanoalloys (F-CNS-CNT), composed of carbon nanotubes (CNT) grown in situ on carbon nanosheets(CNS), was synthesized using a low-temperature solution combustion method and organic compounds rich in pyridinic-N. This distinct structure significantly expands the effective electrochemical surface area, revealing an abundance of active sites and enhancing the mass transfer capability for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Both experimental observations and theoretical calculations corroborate that the synergy between the FeCoNi nanoalloy and the highly pyridinic N-doped carbon substrate optimizes the adsorption and desorption-free energy of oxygen intermediates, resulting in a remarkable improvement of intrinsic ORR/OER activity. Therefore, the derived F-CNS-CNT electrocatalyst can present a favorable half-wave potential of 0.85 V (ORR) and a lower overpotential of 260 mV (corresponding to a current density of 10 mA cm-2, OER) in alkaline media. Moreover, when employed in the air cathode of a flowable zinc-air battery, the electrocatalyst exhibits exceptional discharge and charge performance, including a high power density of 144.6 mW cm-2, a high specific capacity of 801 mAh g-1, and an impressive cycling stability of 600 cycles at a current density of 10 mA cm-2. Notably, these results markedly surpass those of the commercial catalyst Pt/C + IrO2.
Collapse
Affiliation(s)
- Wenju Xie
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031, PR China; College of Ecology and Resources Engineering, Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, Wuyi University, Fujian 354300, PR China
| | - Eryong Wang
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, PR China
| | - Qinghua Sun
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031, PR China
| | - Zhiyong Ouyang
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031, PR China
| | - Tingfang Tian
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, PR China
| | - Jie Zhao
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, PR China
| | - Yanhe Xiao
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, PR China
| | - Shuijin Lei
- School of Physics and Materials Science, Nanchang University, Nanchang 330031, PR China
| | - Baochang Cheng
- Nanoscale Science and Technology Laboratory, Institute for Advanced Study, Nanchang University, Nanchang 330031, PR China; School of Physics and Materials Science, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
3
|
Zhai M, Ye J, Jiang Y, Yuan S, Li Y, Liu Y, Dai L, Wang L, He Z. Biomass-derived carbon materials for vanadium redox flow battery: From structure to property. J Colloid Interface Sci 2023; 651:902-918. [PMID: 37573736 DOI: 10.1016/j.jcis.2023.08.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/15/2023]
Abstract
Biomass-derived carbon (BDC) materials are suitable as electrode or catalyst materials for vanadium redox flow battery (VRFB), owing to the characteristics of vast material sources, environmental friendliness, and multifarious structures. A timely and comprehensive review of the structure and property significantly facilitates the development of BDC materials. Here, the paper starts with the preparation of biomass materials, including carbonization and activation. It is designed to summarize the lastest developments in BDC materials of VRFB in four different structural dimensions from zero dimension (0D) to three dimension (3D). Every dimension begins with meticulously selected examples to introduce the structural characteristics of materials and then illustrates the improved performance of the VRFB due to the structure. Simultaneously, challenges, solutions, and prospects are indicated for the further development of BDC materials. Overall, this review will help researchers select excellent strategies for the fabrication of BDC materials, thereby facilitating the use of BDC materials in VRFB design.
Collapse
Affiliation(s)
- Meixiang Zhai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China
| | - Jiejun Ye
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China
| | - Yingqiao Jiang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China
| | - Sujuan Yuan
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China.
| | - Yuehua Li
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China
| | - Yongguang Liu
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China; Hebei Province Key Laboratory of Photocatalytic and Electrocatalytic Materials for Environment, North China University of Science and Technology, Tangshan 063009, Hebei, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China; Hebei Province Key Laboratory of Photocatalytic and Electrocatalytic Materials for Environment, North China University of Science and Technology, Tangshan 063009, Hebei, China.
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan 063009, Hebei, China; Hebei Province Key Laboratory of Photocatalytic and Electrocatalytic Materials for Environment, North China University of Science and Technology, Tangshan 063009, Hebei, China.
| |
Collapse
|
4
|
Cheng W, Huang W, Zhang A, Du Y, Cui L, Tian P, Liu J. Hierarchical MoO
3
‐MnNi LDH@Cu(OH)
2
Core‐Shell Nanorod Arrays Constructed through In‐Situ Oxidation Combined with a Hydrothermal Strategy for High‐Performance Energy Storage. ChemElectroChem 2022. [DOI: 10.1002/celc.202201051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wenting Cheng
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
| | - Wenjun Huang
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
| | - Aitang Zhang
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
| | - Yiqi Du
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
| | - Liang Cui
- College of Materials Science and Engineering Linyi University Linyi 276000 Shandong China
| | - Pengfei Tian
- College of Materials Science and Engineering Linyi University Linyi 276000 Shandong China
| | - Jingquan Liu
- College of Materials Science and Engineering Institute for Graphene Applied Technology Innovation State Key Laboratory of Bio-Fibers and Eco-Textiles Qingdao University Qingdao 266071 China
- College of Materials Science and Engineering Linyi University Linyi 276000 Shandong China
| |
Collapse
|
5
|
In-situ activator-induced evolution of morphology on carbon materials for supercapacitors. J Colloid Interface Sci 2022; 630:61-69. [DOI: 10.1016/j.jcis.2022.09.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
|
6
|
Wu J, Wang T, Liu Y, Tang W, Geng S, Chen J. Norfloxacin adsorption and subsequent degradation on ball-milling tailored N-doped biochar. CHEMOSPHERE 2022; 303:135264. [PMID: 35690167 DOI: 10.1016/j.chemosphere.2022.135264] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/27/2022] [Accepted: 06/04/2022] [Indexed: 05/27/2023]
Abstract
N-doping is an effective way to modify biochar for enhancing the adsorption capacity. The synthesis of N-doped biochar by the ball-milling method has been attractive due to its facile and eco-friendly approach with low energy consumption. However, the commonly used N-precursor NH3·H2O is environmentally harmful. It is needed to prepare safe and non-toxic N-doped biochar for large-scale production. Here, a urea N-doped biochar (U-MBC) was prepared by the ball-milling method and used for norfloxacin (NOR) removal. The results showed that U-MBC exhibited almost 4-fold higher adsorption capacity for NOR than pristine biochar in a wide pH range (3-9). The adsorption enhancement was owing to the enhancement of H-bonds, π-π electron donor-acceptor, and pore-filling interactions due to the N-doping and ball-milling method. Additionally, 89% of adsorbed NOR can be further removed after 6 h milling. The regenerated U-MBC still had a good adsorption capacity (46.27 mg g-1) and performed well in three cycles. The knowledge gained from this study could encourage researchers to use urea or similar safe N-precursors with the ball-milling method for the large-scale production of N-doped biochar to remove antibiotic organic pollutants in the environment.
Collapse
Affiliation(s)
- Jingqi Wu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Tongshuai Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China; China Household Electric Appliance Research Institute (CHEARI), Beijing, 100053, PR China
| | - Yuyan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Wei Tang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Shuyu Geng
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing, 100083, PR China.
| |
Collapse
|
7
|
ZIF-8 derived carbon with confined sub-nanometer pores for electrochemically selective separation of chloride ions. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
The yolk-shell nanorod structure of Ni3Se2@C electrodes boosting charge transfer and cyclability in high-performance supercapacitors. J Colloid Interface Sci 2022; 615:133-140. [DOI: 10.1016/j.jcis.2022.01.170] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 11/19/2022]
|
9
|
Liu W, Bai P, Wei S, Yang C, Xu L. Gadolinium Changes the Local Electron Densities of Nickel 3d Orbitals for Efficient Electrocatalytic CO
2
Reduction. Angew Chem Int Ed Engl 2022; 61:e202201166. [DOI: 10.1002/anie.202201166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Weiqi Liu
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Peiyao Bai
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Shilin Wei
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Chuangchuang Yang
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Lang Xu
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| |
Collapse
|
10
|
Hajiali F, Jin T, Yang G, Santos M, Lam E, Moores A. Mechanochemical Transformations of Biomass into Functional Materials. CHEMSUSCHEM 2022; 15:e202102535. [PMID: 35137539 DOI: 10.1002/cssc.202102535] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/31/2022] [Indexed: 06/14/2023]
Abstract
Biomass is one of the promising alternatives to petroleum-derived materials and plays a major role in our fight against climate change by providing renewable sources of chemicals and materials. Owing to its chemical and structural complexity, the transformation of biomass into value-added products requires a profound understanding of its composition at different scales and innovative methods such as combining physical and chemical processes. In this context, the use of mechanochemistry in biomass valorization is currently growing owing to its potentials as an efficient, sustainable, and environmentally friendly approach. This review highlights the latest advances in the transformation of biomass (i. e., chitin, cellulose, hemicellulose, lignin, and starch) to functional materials using mechanochemical-assisted methods. We focused here on the methodology of biomass processing, influencing factors, and resulting properties with an emphasis on achieving functional materials rather than breaking down the biopolymer chains into smaller molecules. Opportunities and limitations associated this methodology were discussed accordingly for future directions.
Collapse
Affiliation(s)
- Faezeh Hajiali
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Tony Jin
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Galen Yang
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
| | - Madison Santos
- Department of Bioengineering, McGill University, 3480 University St., Montreal, Quebec, H3A 0E9, Canada
| | - Edmond Lam
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Aquatic and Crop Resource Development Research Centre, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, H4P 2R2, Canada
| | - Audrey Moores
- Centre in Green Chemistry and Catalysis, Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montreal, Quebec, H3A 0B8, Canada
- Department of Materials Engineering, McGill University, 3610 University Street, Montreal, Quebec, H3A 0 C5, Canada
| |
Collapse
|
11
|
Liu W, Bai P, Wei S, Yang C, Xu L. Gadolinium Changes the Local Electron Densities of Nickel 3d Orbitals for Efficient Electrocatalytic CO
2
Reduction. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202201166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Weiqi Liu
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Peiyao Bai
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Shilin Wei
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Chuangchuang Yang
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| | - Lang Xu
- MOE Key Laboratory of Coal Processing and Efficient Utilization School of Chemical Engineering and Technology China University of Mining and Technology 1 Daxue Road Xuzhou Jiangsu 221116 China
| |
Collapse
|
12
|
Jin B, Bai P, Ru Q, Liu W, Wang H, Xu L. Ultrasonic synthesis of Mn-Ni-Fe tri-metallic oxide anchored on polymer-grafted conductive carbon for rechargeable zinc-air battery. ULTRASONICS SONOCHEMISTRY 2021; 81:105846. [PMID: 34839126 PMCID: PMC8637642 DOI: 10.1016/j.ultsonch.2021.105846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/15/2021] [Accepted: 11/22/2021] [Indexed: 05/02/2023]
Abstract
As a promising electrochemical energy device, a rechargeable zinc-air battery (RZAB) requires cost-effective cathode catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Some earth-abundant transition metal oxides have certain levels of bi-functional ORR/OER catalytic activities yet low electronic conductivities. The addition of high-electronic-conductivity material such as carbon black could result in another problem because there is low compatibility between metal oxide and carbon. In this work, polymer chains are ultrasonically prepared to act as binders to anchor metal-oxide active sites to porous domains of carbon black. The monomer N-isopropyl acrylamide is polymerized under ultrasonication instead of using conventional radical initiators which are dangerous and harmful. Reactive free radicals produced by ultrasonic irradiation can also help to form the Mn-Ni-Fe tri-metallic oxide. Thus, aided by the amide-type polymer as an adhesive, the tri-metallic oxide anchored on polymer-grafted carbon black prepared by ultrasonication possess a large number of metal-oxide active sites and hierarchical pores, contributing substantially to the enhanced ORR/OER electrocatalytic performance in the RZABs. Accordingly, this work provides interesting insight into the effective combination of inherently incompatible components for the fabrication of composite materials from an ultrasonic standpoint.
Collapse
Affiliation(s)
- Bolin Jin
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Peiyao Bai
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Qiang Ru
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Weiqi Liu
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Huifen Wang
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou, Jiangsu 221116, China
| | - Lang Xu
- MOE Key Laboratory of Coal Processing and Efficient Utilization, School of Chemical Engineering and Technology, China University of Mining and Technology, 1 Daxue Road, Xuzhou, Jiangsu 221116, China.
| |
Collapse
|
13
|
Zhang H, Zhou Y, Chen J, Wang Z, Ni Z, Wei Q, Chen A, Li M, Sun T, Jin Z, Wågberg T, Hu G, Li X. 3D Melamine Sponge-Derived Cobalt Nanoparticle-Embedded N-Doped Carbon Nanocages as Efficient Electrocatalysts for the Oxygen Reduction Reaction. ACS OMEGA 2021; 6:20130-20138. [PMID: 34395965 PMCID: PMC8358961 DOI: 10.1021/acsomega.1c01036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
The large-scale and controllable synthesis of novel N-doped three-dimensional (3D) carbon nanocage-decorated carbon skeleton sponges (Co-NCMS) is introduced. These Co-NCMS were highly active and durable non-noble metal catalysts for the oxygen reduction reaction (ORR). This hybrid electrocatalyst showed high ORR activity with a diffusion-limiting current of 5.237 mA·cm-2 in 0.1 M KOH solution through the highly efficient 4e- pathway, which was superior to that of the Pt/C catalyst (4.99 mA·cm-2), and the ORR Tafel slope is ca. 67.7 mV·dec-1 at a high potential region, close to that of Pt/C. Furthermore, Co-NCMS exhibited good ORR activity in acidic media with an onset potential comparable to that of the Pt/C catalyst. Most importantly, the prepared catalyst showed much higher stability and better methanol tolerance in both alkaline and acidic solutions. The power density obtained in a proton exchange membrane fuel cell was as high as 0.37 W·cm-2 at 0.19 V compared with 0.45 W·cm-2 at 0.56 V for the Pt/C catalyst. In Co-NCMS, the N-doped carbon nanocages facilitated the diffusion of the reactant, maximizing the exposure of active sites on the surface and protecting the active metallic core from oxidation. This made Co-NCMS one of the best non-noble metal catalysts and potentially offers an alternative approach for the efficient utilization of active transition metals in electrocatalyst applications.
Collapse
Affiliation(s)
- Hua Zhang
- School
of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Yao Zhou
- School
of engineering, University of Edinburgh, Edinburgh EH9 3JW, England
| | - Ji Chen
- School
of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Ziqiu Wang
- MOE
Key Laboratory of Macromolecular Synthesis and Functionalization,
Department of Polymer Science and Engineering, Key Laboratory of Adsorption
and Separation Materials & Technologies of Zhejiang Province, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Zitao Ni
- School
of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Qianwen Wei
- School
of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Anran Chen
- School
of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Meng Li
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Tao Sun
- School
of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Zhang Jin
- School
of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
| | - Thomas Wågberg
- Department
of Physics, Umeå University, SE-90187 Umeå, Sweden
| | - Guangzhi Hu
- School
of Materials and Energy, Yunnan University, Kunming 650091, P. R. China
- College
of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, P. R. China
| | - Xifei Li
- Xi’an
Key Laboratory of New Energy Materials and Devices, Institute of Advanced
Electrochemical Energy & School of Materials Science and Engineering, Xi’an University of Technology, Xi’an 710048, China
| |
Collapse
|
14
|
Wang F, Ren J, Zheng Z, Liu Q, Zhang C. Metal-Free B, N co-Doped Hierarchical Porous Carbon Electrocatalyst with an Excellent O 2 Reduction Performance. ChemistryOpen 2021; 10:713-719. [PMID: 34310052 PMCID: PMC8312485 DOI: 10.1002/open.202100090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
Fuel cells have attracted increasing attention due to their low cost, high energy density, low environmental pollution, and abundant raw materials. Oxygen reduction reaction (ORR) is a core technology of fuel cells, and the development of new electrocatalysts with high ORR performance is highly desirable. Herein, we synthesize a series of B, N co-doped hierarchical porous carbons using a soft template method with the integration of self-assembly, calcination and etching. The obtained materials exhibit hierarchical porous structures, controllable pore distribution, partial graphite structures, and B, N co-doping. They can function as the cost-effective and metal-free electrocatalysts, facilitating the diffusion of electrolyte ions and the improvement of ORR performance. Especially, the B, N co-doped porous carbon with the B-to-N molar ratio of 5 (BNC-5) displays a high ORR activity with a half-wave potential (E1/2 ) of 0.73 V, an onset potential (Eonset ) of 0.94 V, and a high limiting current density (JL ) of 5.98 mA cm-2 , superior to the N-doped C (NC) and BNC-1 (the B-to-N molar ratio=1), BNC-3 (the B-to-N molar ratio=3) and BNC-7 (the B-to-N molar ratio=7) under the identical conditions. Moreover, the BNC-5 exhibits good cycling stability after 5000 cyclic voltammetry (CV) cycles and excellent tolerance toward even 3 M methanol. This research provides a new approach for the facile synthesis of dual element-doped carbon electrocatalysts with high ORR performance.
Collapse
Affiliation(s)
- Fangxiao Wang
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal UniversityJinan250014China
| | - Jianhai Ren
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal UniversityJinan250014China
| | - Zihao Zheng
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal UniversityJinan250014China
| | - Qiye Liu
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal UniversityJinan250014China
| | - Chun‐yang Zhang
- College of ChemistryChemical Engineering and Materials ScienceCollaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of ShandongKey Laboratory of Molecular and Nano ProbesMinistry of EducationShandong Provincial Key Laboratory of Clean Production of Fine ChemicalsShandong Normal UniversityJinan250014China
| |
Collapse
|