1
|
Bonthula S, Ibrahim MF, Al-Jaber AO, Al-Siddiqi ADF, Pothu R, Chowdhury T, Siddiqui Y, Boddula R, Radwan AB, Al-Qahtani N. Facile Fabrication of Pd-Doped CuO-ZnO Composites for Simultaneous Photodegradation of Anionic and Neutral Dyes. PHYSCHEM 2024; 4:181-196. [DOI: 10.3390/physchem4030014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
This study explores the synthesis and application of Pd-doped CuO-ZnO composites for the simultaneous photodegradation of anionic and neutral dyes. The nanocomposite was synthesized using a hydrothermal technique and characterized using XRD, FTIR, and UV-Vis absorption spectra. Photocatalytic degradation experiments were conducted with varying catalyst loadings, revealing optimal conditions for enhanced degradation performance. The nanocomposite exhibited a synergistic effect on the degradation of the dye mixture, following pseudo-first-order kinetics with significant efficiency under sunlight exposure. Moreover, the study evaluated the influence of pH on the degradation process, showing improved efficiency in neutral and basic conditions. Overall, the findings highlight the efficacy of the Pd-doped CuO-ZnO catalyst in degrading complex dye mixtures, offering potential applications for wastewater treatment in various industrial settings.
Collapse
Affiliation(s)
| | - Muna Farah Ibrahim
- Department of Chemistry and Earth Science, College of Arts and Science, Qatar University, Doha 2713, Qatar
| | | | | | - Ramyakrishna Pothu
- School of Physics and Electronics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Tauqeer Chowdhury
- Department of Chemical Engineering, Qatar University, Doha 2713, Qatar
| | - Yusuf Siddiqui
- Department of Computer Engineering, Qatar University, Doha 2713, Qatar
| | - Rajender Boddula
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar
| | | | - Noora Al-Qahtani
- Center for Advanced Materials (CAM), Qatar University, Doha 2713, Qatar
- Central Laboratories Unit (CLU), Qatar University, Doha 2713, Qatar
| |
Collapse
|
2
|
Krishnan A, Swarnalal A, Das D, Krishnan M, Saji VS, Shibli SMA. A review on transition metal oxides based photocatalysts for degradation of synthetic organic pollutants. J Environ Sci (China) 2024; 139:389-417. [PMID: 38105064 DOI: 10.1016/j.jes.2023.02.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/22/2023] [Accepted: 02/27/2023] [Indexed: 12/19/2023]
Abstract
This review provides insight into the current research trend in transition metal oxides (TMOs)-based photocatalysis in removing the organic colouring matters from water. For easy understanding, the research progress has been presented in four generations according to the catalyst composition and mode of application, viz: single component TMOs (the first-generation), doped TMOs/binary TMOs/doped binary TMOs (the second-generation), inactive/active support-immobilized TMOs (the third-generation), and ternary/quaternary compositions (the fourth-generation). The first two generations represent suspended catalysts, the third generation is supported catalysts, and the fourth generation can be suspended or supported. The review provides an elaborated comparison between suspended and supported catalysts, their general/specific requirements, key factors controlling degradation, and the methodologies for performance evaluation. All the plausible fundamental and advanced dye degradation mechanisms involved in each generation of catalysts were demonstrated. The existing challenges in TMOs-based photocatalysis and how the researchers approach the hitch to resolve it effectively are discussed. Future research trends are also presented.
Collapse
Affiliation(s)
- Athira Krishnan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690 525, India.
| | - Anna Swarnalal
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690 525, India
| | - Divine Das
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690 525, India
| | - Midhina Krishnan
- Department of Chemistry, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, 690 525, India
| | - Viswanathan S Saji
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - S M A Shibli
- Department of Chemistry, University of Kerala, Kariavattom Campus, Thiruvananthapuram, Kerala, 695 581, India
| |
Collapse
|
3
|
Chengula PJ, Charles H, Pawar RC, Lee CS. Current trends on dry photocatalytic oxidation technology for BTX removal: Viable light sources and highly efficient photocatalysts. CHEMOSPHERE 2024; 351:141197. [PMID: 38244866 DOI: 10.1016/j.chemosphere.2024.141197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024]
Abstract
One of the main gaseous pollutants released by chemical production industries are benzene, toluene and xylene (BTX). These dangerous gases require immediate technology to combat them, as they put the health of living organisms at risk. The development of heterogeneous photocatalytic oxidation technology offers several viewpoints, particularly in gaseous-phase decontamination without an additional supply of oxidants in air at atmospheric pressure. However, difficulties such as low quantum efficiency, ability to absorb visible light, affinity towards CO2 and H2O synthesis, and low stability continue to limit its practical use. This review presents recent advances in dry-phase heterogeneous photodegradation as an advanced technology for the practical removal of BTX molecules. This review also examines the impact of low-cost light sources, the roles of the active sites of photocatalysts, and the feasible concentration range of BTX molecules. Numerous studies have demonstrated a significant improvement in the efficiency of the photodegradation of volatile organic compounds by enhancing the photocatalytic reactor system and other factors, such as humidity, temperature, and flow rate. The mechanism for BTX photodegradation based on density functional theory (DFT), electron paramagnetic resonance (EPR) and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) investigations is also discussed. Finally, the present research complications and anticipated future developments in the field of heterogeneous photocatalytic oxidation technology are discussed.
Collapse
Affiliation(s)
- Plassidius J Chengula
- Department of Materials and Chemical Engineering, Hanyang University, Ansan, South Korea
| | - Hazina Charles
- Department of Materials and Chemical Engineering, Hanyang University, Ansan, South Korea
| | - Rajendra C Pawar
- Department of Physics, Central University of Rajasthan, Ajmer, Rajasthan, 305817, India
| | - Caroline Sunyong Lee
- Department of Materials and Chemical Engineering, Hanyang University, Ansan, South Korea.
| |
Collapse
|
4
|
Mahato P, Shekhar S, Yadav R, Mukherjee S. Mechanistic elucidation of the catalytic activity of silver nanoclusters: exploring the predominant role of electrostatic surface. NANOSCALE 2024; 16:806-820. [PMID: 38090989 DOI: 10.1039/d3nr05235d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The core and the ligand shell of metal nanoclusters (MNCs) have an influential role in modulating their spectroscopic signatures and catalytic properties. The aspect of electrostatic interactions to regulate the catalytic properties of MNCs has not been comprehensively addressed to date. Our present work conclusively delineates the role of the metal core and the electrostatic surface of MNCs involved in the reduction of nitroarenes. A facile surface modification of mercaptosuccinic acid (MSA)-templated AgNCs has been selectively achieved through Mg2+ ions (Mg-AgNCs). Microscopic studies suggest that the size of Mg-AgNCs is ∼3.3 nm, which is considerably higher than that of MSA-templated AgNCs (∼1.75 nm), confirming the formation of a nano-assembled structure. Our spectroscopic and microscopic experiments revealed that the negatively charged AgNCs efficiently catalyze the reduction of 4-nitrophenol (4-NP) with a rate constant of 0.23 ± 0.01 min-1. However, upon surface modification, the catalytic efficiency almost doubles due to the formation of Mg-AgNCs. Catalysis through AgNCs and Mg-AgNCs collectively portrays the role of the core and electrostatic surfaces. Furthermore, the role of electrostatic interaction has been substantiated by varying the ionic strength of the medium, as well as employing different molecular systems. A quantitative assessment of the Debye screening length asserts the correlation between the ionic strength of the medium and the role of electrostatic interactions involved herein. This highly enhanced catalytic aspect has been utilized for the real sample analysis, wherein AgNCs unexpectedly outperform Mg-AgNCs. This approach of real sample analysis also emanates the role of electrostatics involved. This comprehensive investigation represents the influential role of the core and ligand shell of MNCs as well as the role of electrostatics on its catalytic activities, which is relevant for the rational design of highly efficient catalysts.
Collapse
Affiliation(s)
- Paritosh Mahato
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| | - Shashi Shekhar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| | - Rahul Yadav
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| | - Saptarshi Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462 066, Madhya Pradesh, India.
| |
Collapse
|
5
|
Zhao X, Li A, Yang D, Qiu TY, Zhao Z, Wang SL, Mu X, Tan HQ. Coralloid W 18O 49@covalent organic frameworks S-scheme heterojunction for high efficiency photocatalytic aerobic oxidation. J Colloid Interface Sci 2024; 653:67-76. [PMID: 37708733 DOI: 10.1016/j.jcis.2023.09.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/18/2023] [Accepted: 09/09/2023] [Indexed: 09/16/2023]
Abstract
Reasonably designing and constructing efficient artificial S-mechanism photocatalysts, expanding their application in the field of photocatalytic organic synthesis, have become a hot and challenging topic in the photocatalysis. Herein, a series of coral-like W18O49@TpPa-H (TpPa-H represents COFs generated by the reaction of 1,3,5-triformylphloroglucinol (Tp) and p-phenylenediamine (Pa-H)) composites were successfully prepared by using a simple in-situ encapsulation strategy. Given the internal electric field at the S-scheme interface, W18O49 acts as an oxidative photocatalyst with sufficient positive valence band (VB) position and TpPa-H as a reductive one with enough negative conduction band (CB) position for the efficient amines oxidative coupling to imines. The resulting W18O49@TpPa-H-0.1 hybrid material shows both optimal benzylamine to imine conversion and selectivity exceeding 99 % within 4 h under 10 W 420 nm LED light irradiation, which is 9.9 and 2.8 fold greater than that of W18O49 and TpPa-H, respectively. The photocatalytic activity is even extended to 740 nm. Furthermore, the photocatalytic mechanism research confirmed that a high efficiency S-scheme heterojunction was formed between W18O49 and TpPa-H, and multiple active species, such as ·O2-, 1O2, and h+, synergistically participated in the reaction, imparting its excellent photocatalytic performance. This work may open new avenues for the development of high-efficiency COFs-based S-scheme heterojunction for organic photosynthesis.
Collapse
Affiliation(s)
- Xia Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Aicen Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Dan Yang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Tian-Yu Qiu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhao Zhao
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China; Faculty of Physics, Northeast Normal University, Changchun 130024, China.
| | - Shao-Lei Wang
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| | - Xin Mu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Hua-Qiao Tan
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
6
|
Liu T, Xiong Y, Wang X, Xue Y, Liu W, Ding X, Xing C, Tian J. 1D/1D W 18O 49/Cd 0.9Zn 0.1S S-scheme heterojunction with spatial charge separation for high-yield photocatalytic H 2 evolution. J Colloid Interface Sci 2023; 637:465-476. [PMID: 36716670 DOI: 10.1016/j.jcis.2023.01.118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Semiconductor photocatalytic water splitting is a green way to convert solar energy into chemical energy, but the recombination of electron and hole pairs and the low utilization of sunlight restrict the development of photocatalytic technology. By comparing the morphologies and hydrogen production properties of different proportions of solid solutions (CdxZn1-xS), one-dimensional (1D) Cd0.9Zn0.1S nanorods (NRs) with the best photocatalytic properties are obtained. In addition, 1D W18O49 nanowires are assembled on the surface of 1D Cd0.9Zn0.1S NRs to construct a novel 1D/1D step-scheme (S-scheme) W18O49/Cd0.9Zn0.1S heterojunction photocatalyst. The W18O49/Cd0.9Zn0.1S heterojunction expands the optical absorption capacity of Cd0.9Zn0.1S NRs to provide more energy for the photoexcitation of electrons. The optimal hydrogen production rate of W18O49/Cd0.9Zn0.1S NRs with W18O49 content of 9 wt% is as high as 66.3 mmol·h-1·g-1, which is 5.7 times and 1.6 times higher than that of Cd0.9Zn0.1S NRs and 1 wt% Pt/Cd0.9Zn0.1S NRs. The apparent quantum efficiency (AQE) of 9 wt% W18O49/Cd0.9Zn0.1S reaches 56.0 % and 25.9 % under light wavelength irradiation at 370 and 456 nm, respectively. After the 20 h cycle stability test, the activity of photocatalytic hydrogen evolution does not decrease, due that the severe photo-corrosion of Cd0.9Zn0.1S NRs is efficiently inhibited. This work not only provides a simple and controllable synthesis method for the preparation of heterojunction structure, but also opens up a new way to improve the hydrogen evolution activity and stability of sulfur compounds.
Collapse
Affiliation(s)
- Teng Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ya Xiong
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xinyu Wang
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Yanjun Xue
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Wendi Liu
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoyan Ding
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chengyong Xing
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Tian
- School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
7
|
Constructing Schottky junctions via Pd nanosheets on DUT-67 surfaces to accelerate charge transfer. J Colloid Interface Sci 2022; 608:3022-3029. [PMID: 34815078 DOI: 10.1016/j.jcis.2021.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/03/2021] [Accepted: 11/07/2021] [Indexed: 11/21/2022]
Abstract
The separation, transfer and recombination of charge often affect the rate of photocatalytic reduction of CO2. Schottky junctions can promote the rapid separation of space charge. Therefore, in this paper, Pd nanosheets were grown on the surface of DUT-67 by a hydrothermal method, and a Schottky junction was constructed between DUT-67 and Pd. Under the action of the Schottky junction, the CO yield of 0.3-Pd/DUT-67 reached 12.15 μmol/g/h, which was 17 times higher than that of DUT-67. Efficient charge transfer was demonstrated in photochemical experiments. The large specific surface area and the increased light utilization rate also contributed to the increase in the CO2 reduction efficiency. In addition, the mechanism of Pd/DUT-67 photocatalytic reduction of CO2 was proposed.
Collapse
|
8
|
Hussein MAT, Motawea MM, Elsenety MM, El-Bahy SM, Gomaa H. Mesoporous spongy Ni–Co oxides@wheat straw-derived SiO2 for adsorption and photocatalytic degradation of methylene blue pollutants. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02318-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
9
|
Li P, Zhang Z, Zhuang Z, Guo J, Fang Z, Fereja SL, Chen W. Pd-Doping-Induced Oxygen Vacancies in One-Dimensional Tungsten Oxide Nanowires for Enhanced Acetone Gas Sensing. Anal Chem 2021; 93:7465-7472. [PMID: 33973779 DOI: 10.1021/acs.analchem.1c00568] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Metal oxide semiconductors (MOS) with different nanostructures have been widely used as gas sensing materials due to the tunable interface structures and properties. However, further improvement of the sensing sensitivity and selectivity is still challenging in this area. Constructing appropriate heterogeneous interface structures and oxygen vacancies is one of the important strategies to tune the sensing properties of MOS. In the present study, interfacial heterostructures in PdxW18O49 nanowires (PdxW18O49 NWs) were fabricated and manipulated by doping different Pd contents through a simple hydrothermal process. Relevant characterization proved that the structure and composition of the one-dimensional (1D) nanomaterial can be effectively changed by Pd doping. It was found that the oxygen vacancy concentration increases first with the increase of Pd content, and when the Pd content increases to 7.18% (Pd7.18%W18O49 NWs), the oxygen vacancy content reaches the maximum (52.5%). If the Pd content continues to increase, the oxygen vacancy ratio decreases. The gas sensing investigations illustrated that the PdxW18O49 NWs exhibited enhanced sensing properties than pure W18O49 NWs toward acetone. Among the as-prepared catalysts, the Pd7.18%W18O49 NWs showed the best sensing response and the fastest response-recovery speeds (5 and 10 s, respectively) at a working temperature of 175 °C. In addition, this 1D nanostructure with fabricated heterostructures also delivers a good sensing selectivity and a wide detection range from 100 ppb to 300 ppm, with maintaining excellent performance in the presence of high concentrations of ethanol and carbon dioxide. The excellent gas sensing behavior could be attributed to the generated oxygen vacancies and the heterostructures upon Pd doping. This study offers a novel strategy for the design of high-performance gas sensors for ppb-level acetone sensing.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Ziwei Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhihua Zhuang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jinhan Guo
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhongying Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shemsu Ligani Fereja
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.,University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|