1
|
Zhang L, Cao J, Yeung PWF, Jiang H, Jiang J, Liu W, Ngai T. Unveiling the rheological behavior of poly(styrene-co-N-isopropylacrylamide) microgel aqueous suspensions. J Colloid Interface Sci 2025; 685:1173-1183. [PMID: 39889399 DOI: 10.1016/j.jcis.2025.01.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 01/18/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Poly(N-isopropylacrylamide)-based microgels are soft and deformable colloids, which can swell and shrink in response to external stimuli such as temperature or pH, making them suitable for various industries. Herein, poly(styrene-co-N-isopropylacrylamide) microgels with varying softness were synthesized through the doping of different proportions of styrene into their network structure. Rheological tests revealed that the deformability, surface charge, and wettability of microgels were precisely regulated through adjustments to styrene doping levels. As the molar ratio of styrene increased, the range of the linear viscoelastic region regarding stain did not exhibit a consistent change. The microgel suspensions exhibited a pronounced viscous-like behavior, as indicated by their frequency dependence. Additionally, the concentration or volume fraction of microgels significantly influenced the phase distribution in the phase diagram. At lower concentrations, the microgel suspensions typically underwent a colloidal gel-to-liquid-to-glass transition, with the liquid-like regime expanding as the styrene doping level increased. At higher microgel concentrations, the volume phase transition shifted to a direct colloidal gel-to-glass transition, particularly at high styrene levels. This study also revealed a strong correlation between the power-law viscoelastic exponents and the loss tangent during the entire phase transition, offering valuable insights for structure and rheological properties of poly(N-isopropylacrylamide)-based microgels.
Collapse
Affiliation(s)
- Li Zhang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jun Cao
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Pui Wo Felix Yeung
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Hang Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Jianzhong Jiang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Wei Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| |
Collapse
|
2
|
Wu J, Liu W, Ngai T. Total internal reflection microscopy: a powerful tool for exploring interactions and dynamics near interfaces. SOFT MATTER 2023. [PMID: 37314857 DOI: 10.1039/d3sm00085k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The occurrence of many micro/macrophenomena is closely related to interactions and dynamics near interfaces. Hence, developing powerful tools for characterizing near-interface interactions and dynamics has attached great importance among researchers. In this review, we introduce a noninvasive and ultrasensitive technique called total internal reflection microscopy (TIRM). The principles of TIRM are introduced first, demonstrating the characteristics of this technique. Then, typical measurements with TIRM and the recent development of the technique are reviewed in detail. At the end of the review, we highlight the great progress of TIRM during the past several decades and show its potential to be more influential in measuring interactions and dynamics near interfaces in various research fields.
Collapse
Affiliation(s)
- Jiahao Wu
- Department of Chemistry, The Chinese University of Hong Kong, N.T., Shatin, Hong Kong, China.
| | - Wei Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi, China.
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong, N.T., Shatin, Hong Kong, China.
| |
Collapse
|
3
|
Liu W, Zhu Y, Li Y, Han J, Ngai T. Unveiling the structural relaxation of microgel suspensions at hydrophilic and hydrophobic interfaces. J Colloid Interface Sci 2023; 633:948-958. [PMID: 36509038 DOI: 10.1016/j.jcis.2022.11.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
HYPOTHESIS Poly(N-isopropylacrylamide) (PNIPAM) microgel particles show considerable hydrophilicity below the lower critical solution temperature (LCST) while they become hydrophobic above LCST. We hypothesize that interfacial wettability could tune particle-surface interaction and subsequent structural relaxation of microgel suspensions at interfaces during the volume phase transition. EXPERIMENTS The evanescent-wave scattering images of microgels at hydrophilic and hydrophobic interfaces are analyzed by a density-fluctuation autocorrelation function (δACF) over a wide range of particle volume fraction ϕ. The structural relaxation is characterized by the decay behavior of δACF. The scattering images in bulk are also processed as a comparison. FINDINGS A two-step relaxation decay is observed at both hydrophilic and hydrophobic interfaces. Relative to fast decay, the rate of structural relaxation in slow decay is reduced by a factor of ∼ 500 and ∼ 50 at hydrophilic and hydrophobic interfaces, respectively. The relaxation times obey divergent power-law dependences on intermediate regime of observing length scales at the two interfaces. Besides, the distribution of fluctuation for relaxation time at different local regions reveals that the structural relaxation is much more homogenous at hydrophilic interfaces than that at hydrophobic interfaces, especially at high ϕ.
Collapse
Affiliation(s)
- Wei Liu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yuwei Zhu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Yinan Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Jie Han
- School of Science and Technology, Hong Kong Metropolitan University, Homantin, Kowloon, Hong Kong, China.
| | - To Ngai
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education & School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China; Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|
4
|
Farooqi ZH, Vladisavljević GT, Pamme N, Fatima A, Begum R, Irfan A, Chen M. Microfluidic Fabrication and Applications of Microgels and Hybrid Microgels. Crit Rev Anal Chem 2023; 54:2435-2449. [PMID: 36757081 DOI: 10.1080/10408347.2023.2177097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Smart microgels have gained much attention because of their wide range of applications in the field of biomedical, environmental, nanotechnological and catalysis sciences. Most of the applications of microgels are strongly affected by their morphology, size and size distribution. Various methodologies have been adopted to obtain polymer microgel particles. Droplet microfluidic techniques have been widely reported for the fabrication of highly monodisperse microgel particles to be used for various applications. Monodisperse microgel particles of required size and morphology can be achieved via droplet microfluidic techniques by simple polymerization of monomers in the presence of suitable crosslinker or by gelation of high molecular weight polymers. This report gives recent research progress in fabrication, characterization, properties and applications of microgel particles synthesized by microfluidic methods.
Collapse
Affiliation(s)
- Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | | | - Nicole Pamme
- Department for Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Department of Chemistry and Biochemistry, University of Hull, Hull, United Kingdom
| | - Arooj Fatima
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Minjun Chen
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
5
|
Thermosensitive molecularly imprinted polymer coupled with HPLC for selective enrichment and determination of matrine in traditional Chinese medicine. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1191:123130. [DOI: 10.1016/j.jchromb.2022.123130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/26/2021] [Accepted: 01/15/2022] [Indexed: 11/18/2022]
|