1
|
Jayanarasimhan A, Pathak RM, Shivapuji AM, Rao L. Tar Formation in Gasification Systems: A Holistic Review of Remediation Approaches and Removal Methods. ACS OMEGA 2024; 9:2060-2079. [PMID: 38250394 PMCID: PMC10795124 DOI: 10.1021/acsomega.3c04425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/27/2023] [Accepted: 12/11/2023] [Indexed: 01/23/2024]
Abstract
Gasification is an advanced thermochemical process that converts carbonaceous feedstock into syngas, a mixture of hydrogen, carbon monoxide, and other gases. However, the presence of tar in syngas, which is composed of higher molecular weight aromatic hydrocarbons, poses significant challenges for the downstream utilization of syngas. This Review offers a comprehensive overview of tar from gasification, encompassing gasifier chemistry and configuration that notably impact tar formation during gasification. It explores the concentration and composition of tar in the syngas and the purity of syngas required for the applications. Various tar removal methods are discussed, including mechanical, chemical/catalytic, and plasma technologies. The Review provides insights into the strengths, limitations, and challenges associated with each tar removal method. It also highlights the importance of integrating multiple techniques to enhance the tar removal efficiency and syngas quality. The selection of an appropriate tar removal strategy depends on factors such as tar composition, gasifier operating and design factors, economic considerations, and the extent of purity required at the downstream application. Future research should focus on developing cleaning strategies that consume less energy and cause a smaller environmental impact.
Collapse
Affiliation(s)
| | - Ram Mohan Pathak
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Anand M. Shivapuji
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| | - Lakshminarayana Rao
- Centre for Sustainable Technologies, Indian Institute of Science, Bengaluru, Karnataka 560012, India
| |
Collapse
|
2
|
Qi T, Zhang S, Zhang J, Li T, Xing L, Fang Z, An S, Xu Z, Xiao H, Wang L. In Situ Reconstruction of Active Catalysis Sites Triggered by Chromium Immobilization for Sulfite Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3905-3916. [PMID: 36812062 DOI: 10.1021/acs.est.2c09606] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Hexavalent chromium (Cr(VI)) is a highly toxic substance in wastewater, triggering grievous detriment to aquatic life and human health. Magnesium sulfite is spawned along with the desulfurization process in coal-fired power plants, which is usually disposed of as solid waste. Here, a "waste control by waste" method was proposed upon the redox of Cr(VI)-sulfite, in which highly toxic Cr(VI) is detoxicated and sequent enriched on a novel biochar-induced cobalt-based silica composite (BISC) due to the forced electron transfer from chromium to surface hydroxyl. The immobilized Cr on BISC gave rise to the reconstruction of catalytic active sites "Cr-O-Co", which further enhance its performance in sulfite oxidation by elevating O2 adsorption. As a result, the sulfite oxidation rate increased by 10 times compared with the non-catalysis benchmark together with the maximum chromium adsorption capacity being 120.3 mg/g. Therefore, this study provides a promising strategy to simultaneously control highly toxic Cr(VI) and sulfite, achieving high-grade sulfur resource recovery for wet magnesia desulfurization.
Collapse
Affiliation(s)
- Tieyue Qi
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shuo Zhang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Jingzhao Zhang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Tong Li
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Lei Xing
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhimo Fang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Shanlong An
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Zhongfei Xu
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton E3B 5A3, Canada
| | - Lidong Wang
- Hebei Key Laboratory of Power Plant Flue Gas Multi-Pollutants Control, Department of Environmental Science and Engineering, North China Electric Power University, Baoding 071003, China
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
| |
Collapse
|