1
|
Roy N, Rajasekhara Reddy G, Pallavolu MR, Nallapureddy RR, Dhananjaya M, Sai Kumar A, Banerjee AN, Min BK, Barai HR, Joo SW. High-Performance Battery-Type Supercapacitors Based on Self-Oriented Growth of Nanorods/Nanospheres Composite Assembled on Self-Standing Conductive GO/CNF Frameworks. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34859-34879. [PMID: 38940603 DOI: 10.1021/acsami.4c03109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
MnOx-based materials have limited capacity and poor conductivity over various voltages, hampering their potential for energy storage applications. This work proposes a novel approach to address these challenges. A self-oriented multiple-electronic structure of a 1D-MnO2-nanorod/2D-Mn2O3-nanosphere composite was assembled on 2D-graphene oxide nanosheet/1D-carbon nanofiber (GO/CNF) hybrids. Aided by K+ ions, the MnO2 nanorods were partially converted to Mn2O3 nanospheres, while the GO nanosheets were combined with CNF through hydrogen bonds resulting in a unique double binary 1D-2D mixed morphology of MnO2/Mn2O3-GO/CNF hybrid, having a novel mechanism of multiple Mn ion redox reactions facilitated by the interconnected 3D network. The morphology of the MnO2 nanorods was controlled by regulating the potassium ion content through a rinsing strategy. Interestingly, pure MnO2 nanorods undergo air-annealing to form a mixture of nanorods and nanospheres (MnO2/Mn2O3) with a distinct morphology indicating pseudocapacitive surface redox reactions involving Mn2+, Mn3+, and Mn4+. In the presence of the GO/CNF framework, the charge storage properties of the MnO2/Mn2O3-GO/CNF composite electrode show dominant battery-type behavior because of the unique mesoporous structure with a crumpled morphology that provides relatively large voids and cavities with smaller diffusion paths to facilitate the accumulation/intercalation of charges at the inner electroactive sites for the diffusion-controlled process. The corresponding specific capacity of 800 C g-1 or 222.2 mAh g-1 at 1 A g-1 and remarkable cycling stability (95%) over 5000 cycles at 3 A g-1 were considerably higher than those of the reported electrodes of similar materials. Moreover, a hybrid supercapacitor device is assembled using MnO2/Mn2O3-GO/CNF as the positive electrode and activated carbon as the negative electrode, which exhibits a superior maximum energy density (∼25 Wh kg-1) and maximum power density (∼4.0 kW kg-1). Therefore, the as-synthesized composite highlights the development of highly active low-cost materials for next-generation energy storage applications.
Collapse
Affiliation(s)
- Nipa Roy
- Department of Physics, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Mohan Reddy Pallavolu
- Department of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | | - Merum Dhananjaya
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Arla Sai Kumar
- Department of Physics, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Arghya Narayan Banerjee
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Bong-Ki Min
- Center for Research Facilities, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Sang Woo Joo
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
2
|
Wu W, Yan Y, Yu Y, Wang X, Xu T, Li X. A self-sacrificing template strategy: In-situ construction of bimetallic MOF-derived self-supported CuCoSe nanosheet arrays for high-performance supercapacitors. J Colloid Interface Sci 2023; 650:358-368. [PMID: 37413870 DOI: 10.1016/j.jcis.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/04/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Transition metal selenides (TMSs) are viewed as a prospective high-capacity electrode material for asymmetric supercapacitors (ASCs). However, the inability to expose sufficient active sites due to the limitation of the area involved in the electrochemical reaction severely limits their inherent supercapacitive properties. Herein, a self-sacrificing template strategy is developed to prepare self-supported CuCoSe (CuCoSe@rGO-NF) nanosheet arrays by in situ construction of copper-cobalt bimetallic organic framework (CuCo-MOF) on rGO-modified nickel foam (rGO-NF) and rational design of Se2- exchange process. Nanosheet arrays with high specific surface area are considered to be ideal platforms for accelerating electrolyte penetration and exposing rich electrochemical active sites. As a result, the CuCoSe@rGO-NF electrode delivers a high specific capacitance of 1521.6 F/g at 1 A/g, good rate performance and an excellent capacitance retention of 99.5% after 6000 cycles. The assembled ASC device has a high energy density of 19.8 Wh kg-1 at 750 W kg-1 and an ideal capacitance retention of 86.2% after 6000 cycles. This proposed strategy offers a viable strategy for designing and constructing electrode materials with superior energy storage performance.
Collapse
Affiliation(s)
- Wenrui Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yue Yan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Yingsong Yu
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xing Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Tao Xu
- Department of Chemistry and Applied Biological Sciences, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Xianfu Li
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China.
| |
Collapse
|
3
|
Ling W, Wang H. Study on Electrochemical Properties of Cobalt-nickel Alloy Prepared by Pulsed Electrodeposition. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
|
4
|
Li F, Du M, Xiao X, Xu Q. Self-Supporting Metal-Organic Framework-Based Nanoarrays for Electrocatalysis. ACS NANO 2022; 16:19913-19939. [PMID: 36399093 DOI: 10.1021/acsnano.2c09396] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The replacement of powdery catalysts with self-supporting alternatives for catalyzing various electrochemical reactions is extremely important for the large-scale commercial application of renewable energy storage and conversion technologies. Metal-organic framework (MOF)-based nanoarrays possess tunable compositions, well-defined structure, abundant active sites, effective mass and electron transport, etc., which enable them to exhibit superior electrocatalytic performance in multiple electrochemical reactions. This review presents the latest research progress in developing MOF-based nanoarrays for electrocatalysis. We first highlight the structural features and electrocatalytic advantages of MOF-based nanoarrays, followed by a detailed summary of the design and synthesis strategies of MOF-based nanoarrays, and then describe the recent progress of their application in various electrocatalytic reactions. Finally, the challenges and perspectives are discussed, where further exploration into MOF-based nanoarrays will facilitate the development of electrochemical energy conversion technologies.
Collapse
Affiliation(s)
- Fayan Li
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Meng Du
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Xin Xiao
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| | - Qiang Xu
- Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM), SUSTech-Kyoto University Advanced Energy Materials Joint Innovation Laboratory (SKAEM-JIL), Department of Chemistry, Department of Materials Science and Engineering and Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical Energy Materials and Devices, Southern University of Science and Technology (SUSTech), Shenzhen 518055, China
| |
Collapse
|
5
|
Lokhande P, Kulkarni S, Chakrabarti S, Pathan H, Sindhu M, Kumar D, Singh J, Kumar A, Kumar Mishra Y, Toncu DC, Syväjärvi M, Sharma A, Tiwari A. The progress and roadmap of metal–organic frameworks for high-performance supercapacitors. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Huang L, Huang H, Guo W, Wang S. 3D urchin-like of Zn-Ni-Co ternary oxide microspheres as high-performance electrodes for supercapacitors. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Tailoring the structure and function of metal organic framework by chemical etching for diverse applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
8
|
Zhao X, Tao K, Han L. Self-supported metal-organic framework-based nanostructures as binder-free electrodes for supercapacitors. NANOSCALE 2022; 14:2155-2166. [PMID: 35107472 DOI: 10.1039/d1nr08284a] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs), an interesting class of functional inorganic materials, have recently emerged as suitable electrode materials or templates/precursors of electrode materials for supercapacitors (SCs). The key in utilizing MOF-based electrode materials is to address the low electronic conductivity and poor stability issues. Therefore, the rational design and fabrication of self-supported binder-free electrodes is considered the most promising strategy to address these challenges. In this review, we summarize the recent advances in the design and manufacture of self-supported MOF-based nanostructures and their use as binderless electrodes for SCs, especially over the last five years. The synthesis strategies for constructing pristine MOFs, MOF composites and MOF derivative arrays are overviewed. By highlighting the advantages and challenges of each class of electrode materials, we hope that this review will provide some insights into the rational design of MOF-based electrode materials to promote the future development of this highly exciting field.
Collapse
Affiliation(s)
- Xueyan Zhao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Lei Han
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
9
|
Acharya J, Pant B, Prasad Ojha G, Park M. Embellishing hierarchical 3D core-shell nanosheet arrays of ZnFe 2O 4@NiMoO 4 onto rGO-Ni foam as a binder-free electrode for asymmetric supercapacitors with excellent electrochemical performance. J Colloid Interface Sci 2021; 610:863-878. [PMID: 34863553 DOI: 10.1016/j.jcis.2021.11.129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/19/2021] [Accepted: 11/21/2021] [Indexed: 11/19/2022]
Abstract
Tailoring hierarchical hybrid core-shell electrodes with impartial microstructural features and excellent electroactive constituents is crucial for the design of high-performance supercapacitors (SCs). Herein, for the first time, we fabricate uniformly aligned porous ZnFe2O4 (ZFO) nanosheet arrays onto reduced graphene oxide-garnished conductive Ni foam (rGO-NF) substrates and subsequently embellish the first layer of ZFO nanosheets with morphology-controlled secondary NiMoO4 nanosheets to achieve a hierarchical 3D core-shell structure of ZnFe2O4@NiMoO4 nanosheet arrays (NSAs) onto rGO-NF for SC applications. Improving the synergistic effect of the core-shell nanoarchitecture with a conductive rGO-NF substrate, the hierarchical 3D ZFO@NMO NSAs tend to have superb electronic conductivity, tailoribility, effective nanoporous channels, and appropriate roadways for rapid ion/electron transfer, which are required for rapid reversible redox reactions, thus reflecting the excellent electrochemical features, including the excellent specific capacitance, good rate performance, and prolonged cyclic performance of the three electrode assemblies for SCs. An asymmetric supercapacitor (ASC) device composed of ZFO@NMO NSAs@rGO-NF as the cathode and MOF-derived hollow porous carbon (MDHPC) as the anode exhibits a high energy density of 58.6 Wh kg-1 at a power density of 799 W kg-1 with prolonged cyclic durability (89.6 % after 7000 cycles), thus indicating its potential applicability towards advanced hybrid SCs.
Collapse
Affiliation(s)
- Jiwan Acharya
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
| | - Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, Wanju 55338, Republic of Korea; Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, Wanju 55338, Republic of Korea.
| |
Collapse
|
10
|
Bhattarai DP, Pant B, Acharya J, Park M, Ojha GP. Recent Progress in Metal-Organic Framework-Derived Nanostructures in the Removal of Volatile Organic Compounds. Molecules 2021; 26:molecules26164948. [PMID: 34443537 PMCID: PMC8400575 DOI: 10.3390/molecules26164948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/10/2021] [Indexed: 01/04/2023] Open
Abstract
Air is the most crucial and life-supporting input from nature to the living beings of the planet. The composition and quality of air significantly affects human health, either directly or indirectly. The presence of some industrially released gases, small particles of anthropogenic origin, and the deviation from the normal composition of air from the natural condition causes air pollution. Volatile organic compounds (VOCs) are common contaminants found as indoor as well as outdoor pollutants. Such pollutants represent acute or chronic health hazards to the human physiological system. In the environment, such polluted gases may cause chemical or photochemical smog, leading to detrimental effects such as acid rain, global warming, and environmental pollution through different routes. Ultimately, this will propagate into the food web and affect the ecosystem. In this context, the efficient removal of volatile organic compounds (VOCs) from the environment remains a major threat globally, yet satisfactory strategies and auxiliary materials are far from being in place. Metal–organic frameworks (MOFs) are known as an advanced class of porous coordination polymers, a smart material constructed from the covalently bonded and highly ordered arrangements of metal nodes and polyfunctional organic linkers with an organic–inorganic hybrid nature, high porosities and surface areas, abundant metal/organic species, large pore volumes, and elegant tunability of structures and compositions, making them ideal candidates for the removal of unwanted VOCs from air. This review summarizes the fundamentals of MOFs and VOCs with recent research progress on MOF-derived nanostructures/porous materials and their composites for the efficient removal of VOCs in the air, the remaining challenges, and some prospective for future efforts.
Collapse
Affiliation(s)
| | - Bishweshwar Pant
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
| | - Jiwan Acharya
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
| | - Mira Park
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
- Department of Fire Disaster Prevention, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
- Correspondence: (M.P.); (G.P.O.)
| | - Gunendra Prasad Ojha
- Carbon Composite Energy Nanomaterials Research Center, Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea; (B.P.); (J.A.)
- Woosuk Institute of Smart Convergence Life Care (WSCLC), Woosuk University, 443 Samnye-ro, Samnye-eup, Wanju-gun, Jeonju-si 55338, Korea
- Correspondence: (M.P.); (G.P.O.)
| |
Collapse
|