1
|
Li K, Xue T, Chen L, Li J, Dong F, Sun Y. Dual function of H 2O on interfacial intermediate conversion and surface poisoning regulation in simultaneous photodegradation of NO and toluene. ENVIRONMENTAL RESEARCH 2024; 240:117526. [PMID: 37898225 DOI: 10.1016/j.envres.2023.117526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/24/2023] [Accepted: 10/25/2023] [Indexed: 10/30/2023]
Abstract
Co-existing air pollutants, especially NOx and VOCs, will generate secondary photochemical pollution under light irradiation. However, simultaneous elimination of multi-pollutants has long been a challenge. Photocatalysis could turn the reaction pathway between pollutants to convert them into harmless products, which is a promising technology for multi-pollutant control. Here we achieved synergistic photocatalytic degradation of NO and C7H8 on InOOH photocatalyst, and the performance can be adjusted by H2O through affecting the interaction between surface species and catalyst. In situ DRIFTS and GC-MS revealed that the improved efficiency originated from the fast conversion of C-N coupling intermediates led by additional H2O. Surface characterizations and DFT simulation determined that accumulated nitrates will compete with the adsorption of NO and C7H8, resulting in a decline in efficiency in the later stage. Although improved efficiency would bring more nitrates, as H2O has comparable adsorption to nitrate at the same site, high humidity can mitigate the deactivation. The photocatalyst can be also simply regenerated by water washing. This work reveals the complex interaction in the multi-pollutant system and provides guidelines for precisely regulating the synergistic removal of NOx and VOCs.
Collapse
Affiliation(s)
- Kanglu Li
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ting Xue
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Lvcun Chen
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jianjun Li
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yanjuan Sun
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| |
Collapse
|
2
|
Yang X, Ding X, Wang S, Mao J, Cheng L, Li P, Chen H. Superoxide anion and singlet oxygen dominated faster photocatalytic elimination of nitric oxide over defective bismuth molybdates heterojunctions. J Colloid Interface Sci 2022; 618:248-258. [PMID: 35339961 DOI: 10.1016/j.jcis.2022.03.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 11/24/2022]
Abstract
Establishing an ideal photocatalytic system with efficient reactive oxygen species (ROS) generation has been regarded as the linchpin for realizing efficient nitric oxide (NO) removal and unveiling the ROS-mediated mechanism. In this work, a novel oxygen-deficient 0D/1D Bi3.64Mo0.36O6.55/Bi2MoO6 heterojunctions (BMO-12-H) were successfully synthesized under the enlightenment of clarified crystal growth mechanism of bismuth molybdates. Because of the synergies between defect-engineering and heterojunction-construction, BMO-12-H demonstrated improved photoelectrochemical properties and O2 adsorption capacity, which in turn facilitated the ROS generation and conversion. The enhancement of •O2- and 1O2 endowed BMO-12-H with strengthened NO removal efficiency (59%) with a rate constant of 12.6*10-2 min-1. A conceivable NO removal mechanism dominated by •O2- and 1O2 was proposed and verified based on the theoretical calculations and in-situ infrared spectroscopy tests, where hazardous NO was oxidized following two different exothermic pathways: the •O2--induced NO → NO3- process and the 1O2-induced NO → NO2 → NO3- process. This work offers a basic guideline for accelerating ROS generation by integrating defect-engineering and heterojunction-construction, and provides new insights into the mechanism of efficient NO removal dominated by •O2- and 1O2.
Collapse
Affiliation(s)
- Xianglong Yang
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China; College of Science, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Xing Ding
- College of Science, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Shengyao Wang
- College of Science, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Jin Mao
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Ling Cheng
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China
| | - Peiwu Li
- National Reference Laboratory for Agricultural Testing (Biotoxin), Laboratory of Quality and Safety Risk Assessment for Oilseed Products (Wuhan), Key Laboratory of Detection for Mycotoxins, Quality Inspection and Test Center for Oilseed Products, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, PR China.
| | - Hao Chen
- College of Science, Key Laboratory of Environment Correlative Dietology of Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
3
|
Dai B, Zhao W, Huang H, Li S, Yang G, Wu H, Sun C, Leung DY. Constructing an ohmic junction of copper@ cuprous oxide nanocomposite with plasmonic enhancement for photocatalysis. J Colloid Interface Sci 2022; 616:163-176. [DOI: 10.1016/j.jcis.2022.02.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/19/2022] [Accepted: 02/13/2022] [Indexed: 12/16/2022]
|
4
|
Mechanochemical homodisperse of Bi2MoO6 on Zn-Al LDH matrix to form Z-scheme heterojunction with promoted visible-light photocatalytic performance. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|