1
|
Feng S, Qiu Y, Cohen Stuart MA, Wang J, Guo Z. Growing polyion complex micelles: kinetics and mechanism of electrostatic template polymerization and assembly. J Colloid Interface Sci 2025; 679:1095-1105. [PMID: 39418895 DOI: 10.1016/j.jcis.2024.10.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/30/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
HYPOTHESIS Electrostatic-templated polymerization (ETP) is a recently developed strategy for robust fabrication of stable polyion complex (PIC) micelles with regulated size and morphology, yet the kinetics and mechanism about this one pot process remain elusive. EXPERIMENTS In ETP method, ionic monomers are polymerized in the presence of an oppositely charged ionic-neutral diblock copolymer as template. We investigate the monomer conversion and electrostatic assembly as a function of time, under different polymerization conditions of ionic strength, pH, template/monomer molar ratio and the presence of a cross-linker. FINDINGS The template copolymer accelerates the monomer conversion and formation of PIC micelles dependent on ionic strength and pH. The process follows the "Pick-up" mechanism, where monomers first convert into oligomers which complex with template to induce further chain growth and electrostatic assembly. Introducing cross-linker hardly impacts the reaction kinetics and "Pick-up" route, while it creates PIC micelles containing cross-linked ionic network assembly with the template. Further removing the template by concentrated salt provides purified ionic nanogels. The disclosed findings not only provide a better understanding of the polymerization-assembly process, but also optimize the controls of electrostatic-templated polymerization for the rational design and fabrication of diverse PIC micelles and polyelectrolyte particles.
Collapse
Affiliation(s)
- Shiqi Feng
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Yuening Qiu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Martien A Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China.
| | - Zhili Guo
- Department of Dermatology, Changhai Hospital, Naval Medical University, 174 Changhai Road, Shanghai 200433, People's Republic of China.
| |
Collapse
|
2
|
Lim C, Blocher McTigue WC. Form Equals Function: Influence of Coacervate Architecture on Drug Delivery Applications. ACS Biomater Sci Eng 2024; 10:6766-6789. [PMID: 39423330 PMCID: PMC11558567 DOI: 10.1021/acsbiomaterials.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/26/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024]
Abstract
Complex coacervates, formed through electrostatic interactions between oppositely charged polymers, present a versatile platform for drug delivery, providing rapid assembly, selective encapsulation, and responsiveness to environmental stimuli. The architecture and properties of coacervates can be tuned by controlling structural and environmental design factors, which significantly impact the stability and delivery efficiency of the drugs. While environmental design factors such as salt, pH, and temperature play a crucial role in coacervate formation, structural design factors such as polymer concentration, polymer structure, mixing ratio, and chain length serve as the core framework that shapes coacervate architecture. These elements modulate the phase behavior and material properties of coacervates, allowing for a highly tunable system. In this review, we primarily analyze how these structural design factors contribute to the formation of diverse coacervate architecture, ranging from bulk coacervates to polyion complex micelles, vesicles, and cross-linked gels, though environmental design factors are considered. We then examine the effectiveness of these architectures in enhancing the delivery and efficacy of drugs across various administration routes, such as noninvasive (e.g., oral and transdermal) and invasive delivery. This review aims to provide foundational insights into the design of advanced drug delivery systems by examining how the origin and chemical structure of polymers influence coacervate architecture, which in turn defines their material properties. We then explore how the architecture can be tailored to optimize drug delivery for specific administration routes. This approach leverages the intrinsic properties derived from the coacervate architecture to enable targeted, controlled, and efficient drug release, ultimately enhancing therapeutic outcomes in precision medicine.
Collapse
Affiliation(s)
- Chaeyoung Lim
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Whitney C. Blocher McTigue
- Department of Chemical and Biomolecular
Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
3
|
Wan Y, Wang M, Ding P, Qiu Y, Guo X, Cohen Stuart M, Wang J. Robust Electrostatic-Templated Polymerization for Controllable Synthesis of Stable and Permeable Polyelectrolyte Vesicles. ACS Macro Lett 2024; 13:703-710. [PMID: 38767665 DOI: 10.1021/acsmacrolett.4c00214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Polymer vesicles are of profound interest for designing delivery vehicles and nanoreactors toward a variety of biomedical and catalytic applications, yet robust synthesis of stable and permeable vesicles remains challenging. Here, we propose an electrostatic-templated polymerization that enables fabrication of polyelectrolyte vesicles with simultaneously regulated stability and permeability. In our design, cationic monomers were copolymerized with cross-linkers in the presence of a polyanionic-neutral diblock copolymer as a template. By properly choosing the block length ratio of the template, we fabricated a type of polyion complex vesicle consisting of a cross-linked cationic membrane, electrostatically assembled with the template copolymer which can be removed by sequential dissociation and separation under concentrated salt. We finally obtained stable polyelectrolyte vesicles of regulated size, membrane permeability, and response properties by tuning the synthesis factors including ionic strength, cross-linker type, and fraction as well as different monomers and concentrations. As a proof-of-concept, lipase was loaded in the designed cationic vesicles, which exhibited enhanced enzyme stability and activity. Our study has developed a novel and robust strategy for controllable synthesis of a new class of stable and permeable polymer (polyelectrolyte) vesicles that feature great potential applications as functional delivery carriers and nanoreactors.
Collapse
Affiliation(s)
- Yuting Wan
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Mingwei Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Peng Ding
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Yuening Qiu
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Xuhong Guo
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Martien Cohen Stuart
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| | - Junyou Wang
- State-Key Laboratory of Chemical Engineering, and Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, 200237 Shanghai, People's Republic of China
| |
Collapse
|
4
|
Dubashynskaya NV, Gasilova ER, Skorik YA. Nano-Sized Fucoidan Interpolyelectrolyte Complexes: Recent Advances in Design and Prospects for Biomedical Applications. Int J Mol Sci 2023; 24:ijms24032615. [PMID: 36768936 PMCID: PMC9916530 DOI: 10.3390/ijms24032615] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
The marine polysaccharide fucoidan (FUC) is a promising polymer for pharmaceutical research and development of novel drug delivery systems with modified release and targeted delivery. The presence of a sulfate group in the polysaccharide makes FUC an excellent candidate for the formation of interpolyelectrolyte complexes (PECs) with various polycations. However, due to the structural diversity of FUC, the design of FUC-based nanoformulations is challenging. This review describes the main strategies for the use of FUC-based PECs to develop drug delivery systems with improved biopharmaceutical properties, including nanocarriers in the form of FUC-chitosan PECs for pH-sensitive oral delivery, targeted delivery systems, and polymeric nanoparticles for improved hydrophobic drug delivery (e.g., FUC-zein PECs, core-shell structures obtained by the layer-by-layer self-assembly method, and self-assembled hydrophobically modified FUC particles). The importance of a complex study of the FUC structure, and the formation process of PECs based on it for obtaining reproducible polymeric nanoformulations with the desired properties, is also discussed.
Collapse
|
5
|
Lu X, Zhang S, Shi W, Cheng D, Li HW, Xu S, Dong B. Tunable photoluminescence emission from surface-state to carbon core-state of PAMAM carbonized polymer dots and its high-sensitive detection of copper(II). Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Huang J, Gao Y, Ding P, Guo X, Cohen Stuart MA, Wang J. Rational Polyelectrolyte Design Enables Multifunctional Polyion Complex Vesicles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:6048-6056. [PMID: 35073696 DOI: 10.1021/acsami.1c23244] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Polyion complex (PIC) vesicles prepared by polyelectrolyte assembly have attracted extensive attention as distinctive carriers and nanoreactors, particularly for biological cargoes. However, the constrained regulation of their structure and functionality at this stage hinder the application of PIC vesicles. Herein, we design a new asymmetric assembly system, namely cationic-neutral-cationic triblock copolymer co-assembly with a supramolecular ionic coordination polymer. The former creates poly(ethylene oxide) (PEO) loops upon complexation, which are favorable for vesicle fabrication, while the coordination polyelectrolyte composed of metal ions and a dipicolinic acid (DPA)-based bis-ligand features well-defined functionalities depending on the incorporated metal ions. Thus, the rational combination allows controlled fabrication of PIC vesicles with a modulated structure and functionalities. Moreover, the encapsulation and release of hydrophilic dextran based on different PIC vesicles has been realized. Our design integrates the advantages of both triblock and coordination polymers, and therefore demonstrates a novel strategy for harmonious regulation of the structure and functionality of PIC vesicles. The revealed findings and achieved properties shall be inspirational for developing functional PIC vesicles and boosting their applications towards demand encapsulation and delivery.
Collapse
Affiliation(s)
- Jianan Huang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Yifan Gao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Peng Ding
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Xuhong Guo
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Martien A Cohen Stuart
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| | - Junyou Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People's Republic of China
| |
Collapse
|
7
|
Huang J, Li C, Gao Y, Cai Y, Guo X, Cohen Stuart MA, Wang J. Dendrimer-Based Polyion Complex Vesicles: Loops Make Loose. Macromol Rapid Commun 2021; 43:e2100594. [PMID: 34699665 DOI: 10.1002/marc.202100594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/10/2021] [Indexed: 01/24/2023]
Abstract
Associations of amphiphiles assume their various morphologies according to the so-called packing parameter under thermodynamic control. However, one may raise the question of whether polymers can always relax fast enough to obey thermodynamic control, and how this may be checked. Here, a case of polyion complex (PIC) assemblies where the morphology appears to be subject to kinetic control is discussed. Poly (ethylene oxide)-b-(styrene sulfonate) block copolymers are combined with cationic PAMAM dendrimers of various generations (2-7). The PEO-PSS diblocks, and the corresponding PSS-PEO-PSS triblocks should have nearly identical packing parameters, but surprisingly creat different assemblies, namely core-shell micelles and vesicles, respectively. Moreover, the micelles are very stable against added salt, whereas the vesicles are not only much more sensitive to added salt, but also appear to exchange matter on relevant time scales. The small and largely quenched early-stage precursor complexes are responsible for the morphological and dynamic differences, implying that kinetic control may also be a way to obtain particles with well-defined and useful properties. The exciting new finding that triblocks produce more "active" vesicles will hopefully trigger the exploration of more pathways, and so learn how to tune PICsomes toward specific applications.
Collapse
Affiliation(s)
- Jianan Huang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Chendan Li
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yifan Gao
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Ying Cai
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xuhong Guo
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Martien A Cohen Stuart
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Junyou Wang
- Shanghai Key Laboratory of Multiphase Materials Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
8
|
Bizzarri BM, Fanelli A, Botta L, Zippilli C, Cesarini S, Saladino R. Dendrimeric Structures in the Synthesis of Fine Chemicals. MATERIALS (BASEL, SWITZERLAND) 2021; 14:5318. [PMID: 34576547 PMCID: PMC8471025 DOI: 10.3390/ma14185318] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/30/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
Dendrimers are highly branched structures with a defined shape, dimension, and molecular weight. They consist of three major components: the central core, branches, and terminal groups. In recent years, dendrimers have received great attention in medicinal chemistry, diagnostic field, science of materials, electrochemistry, and catalysis. In addition, they are largely applied for the functionalization of biocompatible semiconductors, in gene transfection processes, as well as in the preparation of nano-devices, including heterogeneous catalysts. Here, we describe recent advances in the design and application of dendrimers in catalytic organic and inorganic processes, sustainable and low environmental impact, photosensitive materials, nano-delivery systems, and antiviral agents' dendrimers.
Collapse
Affiliation(s)
- Bruno Mattia Bizzarri
- Biological and Ecological Sciences Department (DEB), University of Tuscia, 01100 Viterbo, Italy; (A.F.); (L.B.); (C.Z.); (S.C.)
| | | | | | | | | | - Raffaele Saladino
- Biological and Ecological Sciences Department (DEB), University of Tuscia, 01100 Viterbo, Italy; (A.F.); (L.B.); (C.Z.); (S.C.)
| |
Collapse
|