1
|
Cai X, Pang S, Zhang M, Teng J, Lin H, Xia S. Predicting thermodynamic adhesion energies of membrane fouling in planktonic anammox MBR via backpropagation neural network model. BIORESOURCE TECHNOLOGY 2024; 406:131011. [PMID: 38901751 DOI: 10.1016/j.biortech.2024.131011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/01/2024] [Accepted: 06/16/2024] [Indexed: 06/22/2024]
Abstract
Predicting thermodynamic adhesion energies was a critical strategy for mitigating membrane fouling. This study utilized a backpropagation (BP) neural network model to predict the thermodynamic adhesion energies associated with membrane fouling in a planktonic anammox MBR. Acid-base (ΔGAB), electrostatic double layer (ΔGEL), and Lifshitz-van der Waals (ΔGLW) energies were selected as output variables, the training dataset was collected by the advanced Derjaguin-Landau-Verwey-Overbeek (XDLVO) method. Optimization results identified "7-10-3″ as the optimal network structure for the BP model. The prediction results demonstrated a high degree of fit between the predicted and experimental values of thermodynamic adhesion energy (R2 ≥ 0.9278), indicating a robust predictive capability of the model in this study. Overall, the study presented a practical BP neural network model for predicting thermodynamic adhesion energies, significantly enhancing the prediction tool for adhesive fouling behavior in anammox MBRs.
Collapse
Affiliation(s)
- Xiang Cai
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China; State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Si Pang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Institute of Eco-Environment and Plant Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Meijia Zhang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Jiaheng Teng
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
2
|
Liu B, Jun Y, Zhao C, Zhou C, Zhu T, Shao S. Using Fe(II)/Fe(VI) activated peracetic acid as pretreatment of ultrafiltration for secondary effluent treatment: Water quality improvement and membrane fouling mitigation. WATER RESEARCH 2023; 244:120533. [PMID: 37659184 DOI: 10.1016/j.watres.2023.120533] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/04/2023]
Abstract
Ultrafiltration (UF) is a technology commonly used to treat secondary effluents in wastewater reuse; however, it faces two main challenges: 1) membrane fouling and 2) inadequate nitrogen (N), phosphorus (P), and organic micropollutants (OMPs) removal. To address these two issues, in this study, we applied peracetic acid (PAA), Fe(VI)/PAA, and Fe(II)/PAA as UF pretreatments. The results showed that the most effective pretreatment was Fe(II)/200 μM PAA, which reduced the total fouling resistance by 90.2%. In comparison, the reduction was only 29.7% with 200 μM PAA alone and 64.3% with Fe(VI)/200 μM PAA. Fe(II)/200 μM PAA could effectively remove fluorescent components and hydrophobic organics in effluent organic matter (EfOM), and enhance the repulsive force between foulants and membrane (according to XDLVO analysis), and consequently, mitigate pore blocking and delay cake layer formation. Regarding pollutant removal, Fe(II)/200 μM PAA effectively degraded OMPs (>85%) and improved P removal by 58.2% via in-situ Fe(Ⅲ) co-precipitation. The quencher and probe experiments indicated that FeIVO2+, •OH, and CH3C(O)OO•/CH3C(O)O• all played important roles in micropollutant degradation with Fe(II)/PAA. Interestingly, PAA oxidation produced highly biodegradable products such as acetic acid, which significantly elevated the BOD5 level and increased the BOD5/total nitrogen (BOD5/TN) ratio from 0.8 to 8.6, benefiting N removal with subsequent denitrification. Overall, the Fe(II)/PAA process exhibits great potential as a UF pretreatment to control membrane fouling and improve water quality during secondary effluent treatment.
Collapse
Affiliation(s)
- Bin Liu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Yin Jun
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Changrong Zhao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China
| | - Chu Zhou
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China
| | - Tingting Zhu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha 410082, PR China.
| | - Senlin Shao
- School of Civil Engineering, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
3
|
Zhang B, Shen J, Mao X, Zhang B, Shen Y, Shi W. A novel membrane bioreactor inoculated with algal-bacterial granular sludge for sewage reuse and membrane fouling mitigation: Performance and mechanism. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122194. [PMID: 37453682 DOI: 10.1016/j.envpol.2023.122194] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
In this study, a novel membrane bioreactor (MBR) inoculated with algal-bacterial granular sludge (ABGMBR) was established to improve pollutant removal and alleviate membrane fouling. The ABGMBR system showed higher pollutant removal rate and longer operation time (152 day) compared to the control MBR (AGMBR). Moreover, the contents of the pollutants such as granular sludges, extracellular polymeric substances (EPS), and soluble microbial products on the membrane were remarkably reduced, leading to the formation of a porous and loose cake layer on the membrane and a slow increase in transmembrane pressure. Standard blocking was the main mechanism of membrane fouling; however, the membrane pore blockage was significantly reduced in ABGMBR. The extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory suggested that the aggregation and adhesion of foulants on the membrane were greatly inhibited in ABGMBR. Furthermore, correlation analysis showed significant differences in membrane fouling characteristics between AGMBR and ABGMBR. The ABGMBR system effectively retarded sludge disintegration and increased the repulsion between the sludge and membrane owing to the favorable mixed liquor characteristics. This study showcases the superior operational efficiency and anti-fouling performance of ABGMBR, offering a novel perspective on sewage reuse and membrane fouling mitigation.
Collapse
Affiliation(s)
- Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing, 409003, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400060, China.
| | - Jing Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xin Mao
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bing Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing Yujiang Intelligent Technology Co., Ltd., Chongqing, 409003, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd., Chongqing, 400060, China
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
4
|
Cai X, Wang A, Dai B, Wang Z, Xia S. Insights into the membrane biofouling behavior of planktonic anammox bacteria: Effect of solution pH and ionic strength. CHEMOSPHERE 2023; 329:138656. [PMID: 37040838 DOI: 10.1016/j.chemosphere.2023.138656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/06/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Understanding the effect of solution pH and ionic strength on membrane biofouling of anammox bacteria is essential for the widespread application of anammox MBRs. To provide an original elucidation, this study combined interfacial thermodynamics analysis and filtration experiments with an established planktonic anammox MBR to explore the biofouling behavior of anammox bacteria under varying solution pH and ionic strengths. Preliminary results showed that variation in solution pH and ionic strength has critical impacts on the thermodynamic properties of planktonic anammox bacteria and membrane surfaces. The further interfacial thermodynamics analysis and filtration experiments indicated that an increased pH and a decreased ionic strength could reduce membrane fouling by planktonic anammox bacteria. More specifically, a higher pH or lower ionic strength resulted in a stronger repulsive energy barrier due to the larger interaction distance covered by the dominant electrostatic double layer (EL) component compared to the Lewis acid-base (AB) and Lifshitz-van der Waals (LW) components, which corresponded to a reduction in the normalized flux (J/J0) decline and the accumulation of cake resistance (Rc) during the filtration process. Furthermore, the aforementioned effect mechanism was verified by a correlation analysis of the thermodynamic properties and filtration behavior. These findings have generalized significance for understanding the biofouling or aggregation behavior of anammox bacteria.
Collapse
Affiliation(s)
- Xiang Cai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Anqi Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Ben Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Zhenyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
5
|
Zhang B, Tang H, Huang D, Liu C, Shi W, Shen Y. Effect of superficial gas velocity on membrane fouling behavior and evolution during municipal wastewater treatment. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
6
|
Zhang M, Xia Q, Zhao X, Guo J, Zeng L, Zhou Z. Concentration effects of calcium ion on polyacrylamide fouling of ion-exchange membrane in electrodialysis treatment of flue gas desulfurization wastewater. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
7
|
Effect of modified microbial flocculant on membrane fouling alleviation in a hybrid aerobic granular sludge membrane system for wastewater reuse. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Zhang B, Tang H, Gu X, Li X, Zhang B, Shen Y, Shi W. Discrepant effects of monovalent cations on membrane fouling induced by colloidal polymer: Evaluation and mechanism investigation. CHEMOSPHERE 2022; 295:133939. [PMID: 35149021 DOI: 10.1016/j.chemosphere.2022.133939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/24/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Understanding how ionic conditions affect membrane fouling induced by anionic polyacrylamide (APAM) is important for achieving long-term and stable operation of a polymer flooding produced wastewater (PFPW) membrane separation process. However, there is lack of studies on the effects of monovalent cations (Na+ and K+) on APAM-based membrane fouling. In this work, the effects of Na+ and K+ on filtration efficiency, flux decline behavior, fouling resistance, and cleaning efficiency were studied through a series of microfiltration tests. Moreover, the influencing mechanism of membrane fouling was further comprehensively revealed from the aspects of the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, the hydration force, and the microstructure characterizations. The XDLVO theory agreed well with membrane fouling behavior at various ionic strengths. The increase in ionic strength (0-10,000 mg/L) of Na+ and K+ exacerbated the reduction of relative flux (J/J0) and the accumulation of fouling resistance, as well as made the porous APAM-induced fouling layer denser and more compact, boosting removal efficiency. Furthermore, K+ had a stronger aggravating effect on membrane fouling than Na+. Specifically, the final value of J/J0 for APAM+K+ (0.08) was lower than that for APAM + Na+ (0.12), and the fouling resistance for APAM+K+ (12.25 × 1011 m-1) was higher than that for APAM + Na+ (12.01 × 1011 m-1) at an ionic strength of 10,000 mg/L, which was owing to the larger hydration force caused by Na+ with a smaller ionic radius. This research offers practical guidance for the PFPW membrane filtering process.
Collapse
Affiliation(s)
- Bing Zhang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Heli Tang
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xiaolong Gu
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xiaohong Li
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Bing Zhang
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China.
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co.Ltd., Chongqing, 400060, China.
| | - Wenxin Shi
- School of Environmental and Ecology, Chongqing University, Chongqing, 400044, China
| |
Collapse
|