1
|
Qin Y, Zhou F, Wang C, Liu W. Role of Cr(VI) in the efficient removal of Cd(II) from aqueous solutions using Fe 3S 4 in a Cd(II)/Cr(VI) binary system. ENVIRONMENTAL RESEARCH 2025; 275:121404. [PMID: 40089000 DOI: 10.1016/j.envres.2025.121404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 02/28/2025] [Accepted: 03/13/2025] [Indexed: 03/17/2025]
Abstract
In this study, the synthesized magnetic greigite (Fe3S4) was utilized to simultaneously eliminate Cd(II) and Cr(VI) from aqueous solution. The removal efficiency (96.6 %) of Cd(II) in the binary (Cd(II)/Cr(VI)) system was superior to that (79.2 %) of the single (Cd(II)) system, accompanied by a negligible difference in the removal efficiency of Cr(VI) (∼100 %) between the single Cr(VI) and binary systems. The adsorption process of Cd(II) onto Fe3S4 closely followed the pseudo-first order kinetic model and Freundlich isotherm, suggesting that the adsorption of Cd(II) primarily involved multi-molecular layer physical adsorption. Characterization results confirmed that the surface hydroxyl groups on Fe3S4 played a significant role in the Cd(II) adsorption in the single system. In contrast, in the binary system, the adsorption of Cd(II) was predominantly attributed to surface sulfide groups at pH 3.8, while hydroxyl groups were the primary contributors to Cd(II) adsorption at pH 6.8. Additionally, at pH 5.3, both sulfide and hydroxyl groups contributed equally to Cd(II) adsorption. This pH-dependent mechanism for Cd(II) removal was resulted from the fact that Cr(VI) could not only influence the solution pH and adjust the isoelectric point of Fe3S4 to enhance the electrostatic attraction between Cd(II) and Fe3S4, but also diminish the concentrations of Fe species to eliminate their competitive adsorption with Cd(II). This study is significantly important for understanding the enhanced removal mechanisms of Cd(II) in the presence of Fe3S4, particularly with the coexistence of Cr(VI), as well as for the simultaneous remediation of both cationic and anionic pollutants from wastewater using iron sulfides.
Collapse
Affiliation(s)
- Yaxin Qin
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Fengfeng Zhou
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Chao Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Wei Liu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China.
| |
Collapse
|
2
|
Javed J, Zhou Y, Ullah S, Gao T, Yang C, Han Y, Wu H. Progress and Perspectives on Pyrite-Derived Materials Applied in Advanced Oxidation Processes for the Elimination of Emerging Contaminants from Wastewater. Molecules 2025; 30:2194. [PMID: 40430366 PMCID: PMC12114071 DOI: 10.3390/molecules30102194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/12/2025] [Accepted: 05/14/2025] [Indexed: 05/29/2025] Open
Abstract
Emerging contaminants (ECs) in wastewater threaten environmental and human health, while conventional methods often prove inadequate. This has driven increased concern among decision makers, justifying the need for innovative and effective treatment approaches. Pyrite-derived materials have attracted great interest in advanced oxidation processes (AOPs) as catalysts because of their unique Fe-S structure, ability to undergo redox cycling, and environmental friendliness. This review explores recent advances in pyrite-derived materials for AOP applications, focusing on their synthesis, catalytic mechanisms, and pollutant degradation. It examines how pyrite activates oxidants such as hydrogen peroxide (H2O2), peracetic acid (PAA), and peroxymonosulfate (PMS) can be used to generate reactive oxygen species (ROS). The role of multi-dimensional pyrite architectures (0D-3D) in enhancing charge transfer, catalytic activity, and recyclability is also discussed. Key challenges, including catalyst stability, industrial scalability, and Fe/S leaching, are addressed alongside potential solutions. Future directions include the integration of pyrite-based catalysts with hybrid materials, as well as green synthesis to improve practical applications. This review provides researchers and engineers with valuable insights into developing sustainable wastewater treatment technologies.
Collapse
Affiliation(s)
- Jannat Javed
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.J.)
- School of International Education, Yanshan University, Qinhuangdao 066004, China;
| | - Yuting Zhou
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.J.)
| | - Saad Ullah
- School of International Education, Yanshan University, Qinhuangdao 066004, China;
- State Key Laboratory of Metastable Materials Science and Technology, Key Laboratory of Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, China
| | - Tianjiu Gao
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.J.)
| | - Caiyun Yang
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.J.)
| | - Ying Han
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.J.)
- Shenzhen Research Institute of Yanshan University, Shenzhen 518000, China
| | - Hao Wu
- Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Key Laboratory of Applied Chemistry, School of Environmental and Chemical Engineering, Yanshan University, Qinhuangdao 066004, China; (J.J.)
- Shenzhen Research Institute of Yanshan University, Shenzhen 518000, China
| |
Collapse
|
3
|
Liang Q, Jiang L, Zheng J, Duan N. Mechanism study of the effect of copper ions on the stability of As(III) sulfuration precipitation in acidic copper smelting wastewater. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 197:36. [PMID: 39643835 DOI: 10.1007/s10661-024-13524-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Sulfide precipitation is considered as a very efficient method for removing arsenic from actual copper smelting acidic wastewater. However, the arsenic removal process can be affected by copper ions. This study focuses on the mechanism of copper ions' influence on the stability of As(III) sulfuration precipitation. Sulfuration reaction experiments are carried out using Na2S in three different simulated highly acidic wastewaters with initial As(III) concentrations of 2000 mg/L (LAs), 5000 mg/L (MAs), and 10000 mg/L (HAs), and the implications of processes variables of S/As ratio and copper concentration on the stability of As(III) sulfuration precipitation are discussed. The results show that the As(III) sulfuration precipitation is significantly affected by copper ions in the LAs reaction systems, whereas in the MAs and HAs reaction systems, which can be noticeably affected by copper ions only when the S/As is not greater than 1.5 (≤ 1.5), i.e., when the amount of Na2S is insufficient. Person correlation analysis also demonstrates a remarkable negative correlation (correlation coefficient is around - 0.96) between the S/As ratio and copper ion concentration on As(III) removal efficiency in the LAs reaction systems. The effect of copper ions on As2S3 is further investigated, and it is detected that copper ions cause approximately 3.3% of the precipitated As2S3 to be re-dissolved. This study proves that copper ions not only compete with As(III) for S2-, but also cause the precipitated As2S3 to re-dissolve. Therefore, in the actual manufacturing process, it is essential to control not only the sulfiding dose, but also the copper ions. This study provides a specific reference for actual enterprises to sulfurize As(III) from highly acidic wastewater and is of great significance for controlling actual industrial processes.
Collapse
Affiliation(s)
- Qian Liang
- State Environmental Protection Key Laboratory of Eco-Industry, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Linhua Jiang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Jiwu Zheng
- State Power Investment Corporation Shanxi New Energy Co., Ltd, Shanxi, 710061, China
| | - Ning Duan
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| |
Collapse
|
4
|
Tian J, Dong X, Sabola EE, Wang Y, Chen K, Zhu M, Dai B, Zhang S, Guo F, Shi K, Chi J, Xu P. Sequential Regulation of Local Reactive Oxygen Species by Ir@Cu/Zn-MOF Nanoparticles for Promoting Infected Wound Healing. ACS Biomater Sci Eng 2024; 10:3792-3805. [PMID: 38814749 DOI: 10.1021/acsbiomaterials.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Most antimicrobials treat wound infections by an oxidation effect, which is induced by the generation of reactive oxygen species (ROS). However, the potential harm of the prolonged high level of ROS should not be ignored. In this study, we presented a novel cascade-reaction nanoparticle, Ir@Cu/Zn-MOF, to effectively regulate the ROS level throughout the healing progress of the infected wound. The nanoparticles consisted of a copper/zinc-modified metal-organic framework (Cu/Zn-MOF) serving as the external structure and an inner core composed of Ir-PVP NPs, which were achieved through a process known as "bionic mineralization". The released Cu2+ and Zn2+ from the shell structure contributed to the production of ROS, which acted as antimicrobial agents during the initial stage. With the disintegration of the shell, the Ir-PVP NP core was gradually released, exhibiting the property of multiple antioxidant enzyme activities, thereby playing an important role in clearing excessive ROS and alleviating oxidative stress. In a full-layer infected rat wound model, Ir@Cu/Zn-MOF nanoparticles presented exciting performance in promoting wound healing by clearing the bacteria and accelerating neovascularization as well as collagen deposition. This study provided a promising alternative for the repair of infected wounds.
Collapse
Affiliation(s)
- Jinrong Tian
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Xing Dong
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Eluby Esmie Sabola
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Yuqi Wang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Kai Chen
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325025, China
| | - Meng Zhu
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Bichun Dai
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Shanshan Zhang
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Feixia Guo
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Keqing Shi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou Zhejiang 325035, China
| | - Junjie Chi
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Pingwei Xu
- Translational Medicine Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
- The Center of Wound Healing and Regeneration, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
5
|
Yuan Y, Wei X, Zhu M, Cai Y, Wang Y, Dang Z, Yin H. Unravelling the removal mechanisms of trivalent arsenic by sulfidated nanoscale zero-valent iron: The crucial role of reactive oxygen species and the multiple effects of citric acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170275. [PMID: 38262532 DOI: 10.1016/j.scitotenv.2024.170275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The remediation of arsenic-contaminated groundwater by sulfidated nanoscale zero-valent iron (S-nZVI) has raised considerable attention. However, the role of trivalent arsenic (As(III)) oxidation by S-nZVI in oxic conditions (S-nZVI/O2) remains controversial, and the comprehensive effect of citric acid (CA) prevalent in groundwater on As(III) removal by S-nZVI remains unclear. Herein, the mechanisms of reactive oxygen species (ROS) generation and multiple effects of CA on As(III) removal by S-nZVI/O2 were systematically explored. Results indicated that the removal efficiency of As(III) by S-nZVI/O2 (97.81 %) was prominently higher than that by S-nZVI (66.71 %), resulting from the significant production of ROS (mainly H2O2 and OH) under oxic conditions, which played a crucial role in promoting the As(III) oxidation. Additionally, CA had multiple effects on As(III) removal by S-nZVI/O2 system: (i) CA impeded the diffusion of As(III) towards S-nZVI and increased the secondary risk of immobilized As(III) re-releasing into the environment due to the Fe dissolution from S-nZVI; (ii) CA could significantly enhance the yields of OH from 25.29 to 133.00 μM via accelerating the redox cycle of Fe(II)/Fe(III) and increasing the oriented conversion rate of H2O2 to OH; (iii) CA could also enrich the types of ROS (such as O2- and 1O2) in favor of further As(III) oxidation. This study contributed novel findings regarding the control of As(III) contaminated groundwater using S-nZVI technologies.
Collapse
Affiliation(s)
- Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Xipeng Wei
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Yuhao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Yuanzheng Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
6
|
Sharma V, Yan R, Feng X, Xu J, Pan M, Kong L, Li L. Removal of toxic metals using iron sulfide particles: A brief overview of modifications and mechanisms. CHEMOSPHERE 2024; 346:140631. [PMID: 37939922 DOI: 10.1016/j.chemosphere.2023.140631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 10/22/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Growing mechanization has released higher concentrations of toxic metals in water and sediment, which is a critical concern for the environment and human health. Recent studies show that naturally occurring and synthetic iron sulfide particles are efficient at removing these hazardous pollutants. This review seeks to provide a concise summary of the evolution in the production of iron sulfide particles, specifically nanoparticles, through the years. This review presents an outline of the synthesis process for the most dominant forms of iron sulfide: mackinawite (FeS), pyrite (FeS2), pyrrhotite (Fe1-x S), and greigite (Fe3S4). The review confirms that both natural forms of iron sulfide and modified forms of iron sulfide are highly effective at removing different heavy metals and metalloids from water. Concurrently, this review reveals the interaction mechanism between toxic metals and iron sulfide, along with the impact of conditions for remedy and rectification. None the less, modifications and future investigations into the synthesis of novel iron sulfides, their use to adsorb diverse environmental pollutants, and their fate after injection into polluted aquifers, remain crucial to maximizing pollution control.
Collapse
Affiliation(s)
- Vaishali Sharma
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ruixin Yan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Xiuping Feng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Junqing Xu
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Meitian Pan
- China-UK Low Carbon College, Shanghai Jiao Tong University, Shanghai, 201306, China
| | - Long Kong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Liang Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
7
|
Yang H, Chen X, Wang A, Liu S, Liang X, Lu H, Li Q. Regulating sludge composting with percarbonate facilitated the methylation and detoxification of arsenic mediated via reactive oxygen species. BIORESOURCE TECHNOLOGY 2023; 387:129674. [PMID: 37586432 DOI: 10.1016/j.biortech.2023.129674] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023]
Abstract
This study purposed to demonstrate the impact of reactive oxygen species (ROS) on arsenic detoxification mechanism in sludge composting with percarbonate. In this study, sodium percarbonate was used as an additive. Adding sodium percarbonate increased the content of H2O2 and OH, which the experimental group (SPC) was higher than the control group (CK). In addition, it decreased the bioavailability of arsenic by 19.10%. Metagenomic analysis found that Firmicutes and Pseudomonas took an active part in the overall compost as the dominant bacteria of arsenic methylation. ROS positively correlated with arsenic oxidation and methylation genes (arsC, arsM), with the gene copy number of arsC and arsM increasing to 7.74 × 1012, 5.24 × 1012 in SPC. In summary, the passivation of arsenic could be achieved by adding percarbonate, which promoted the methylation of arsenic, reduced the toxicity of arsenic, and provided a new idea for the harmless management of sludge.
Collapse
Affiliation(s)
- Hongmei Yang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xiaojing Chen
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Ao Wang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Shuaipeng Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Xueling Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Heng Lu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Qunliang Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|
8
|
Miao X, Yin Y, Chen Y, Bi W, Yin Y, Chen S, Peng D, Gao L, Qin T, Liu X. Bidirectionally Regulating Viral and Cellular Ferroptosis with Metastable Iron Sulfide Against Influenza Virus. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206869. [PMID: 37092591 PMCID: PMC10265104 DOI: 10.1002/advs.202206869] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
Influenza virus with numerous subtypes and frequent variation limits the development of high-efficacy and broad-spectrum antiviral strategy. Here, a novel multi-antiviral metastable iron sulfides (mFeS) against various influenza A/B subtype viruses is developed. This work finds that mFeS induces high levels of lipid peroxidation and •OH free radicals in the conservative viral envelope, which depends on Fe2+ . This phenomenon, termed as a viral ferroptosis, results in the loss of viral infectibility and pathogenicity in vitro and in vivo, respectively. Furthermore, the decoction of mFeS (Dc(mFeS)) inhibits cellular ferroptosis-dependent intracellular viral replication by correcting the virus-induced reprogrammed sulfur metabolism, a conserved cellular metabolism. Notably, personal protective equipment (PPE) that is loaded with mFeS provides good antiviral protection. Aerosol administration of mFeS combined with the decoction (mFeS&Dc) has a potential therapeutic effect against H1N1 lethal infection in mice. Collectively, mFeS represents an antiviral alternative with broad-spectrum activity against intracellular and extracellular influenza virus.
Collapse
Affiliation(s)
- Xinyu Miao
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yinyan Yin
- College of MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education InstitutionsYangzhou UniversityYangzhouJiangsu225009P. R. China
- Guangling CollegeYangzhou UniversityYangzhouJiangsu225000P. R. China
| | - Yulian Chen
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Wenhui Bi
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yuncong Yin
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Sujuan Chen
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Daxin Peng
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsu225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouJiangsu225009P. R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry DiseaseYangzhouJiangsu225009P. R. China
| | - Lizeng Gao
- CAS Engineering Laboratory for NanozymeInstitute of BiophysicsChinese Academy of SciencesBeijing100101P. R. China
| | - Tao Qin
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsu225009P. R. China
- Jiangsu Co‐innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou UniversityYangzhouJiangsu225009P. R. China
- Jiangsu Research Centre of Engineering and Technology for Prevention and Control of Poultry DiseaseYangzhouJiangsu225009P. R. China
| | - Xiufan Liu
- College of Veterinary MedicineYangzhou UniversityYangzhouJiangsu225009P. R. China
- Joint International Research Laboratory of Agriculture and Agri‐Product Safetythe Ministry of Education of ChinaYangzhou UniversityYangzhouJiangsu225009P. R. China
| |
Collapse
|
9
|
Liang C, Qian L, Li H, Dong X, Zheng T, Chen M. New insight into the activation mechanism of hydrogen peroxide by greigite (Fe 3S 4) for benzene removal: The combined action of dissolved and surface bounded ferrous iron. CHEMOSPHERE 2023; 321:138111. [PMID: 36780998 DOI: 10.1016/j.chemosphere.2023.138111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/28/2023] [Accepted: 02/08/2023] [Indexed: 06/18/2023]
Abstract
Iron sulfides have attracted growing concern in heterogeneous Fenton reaction. However, the structure of iron sulfides is different from that of iron oxides and how the structures affect the activation property of hydrogen peroxide (H2O2) remains unclear. This study investigated benzene removal through the activation of H2O2 by the synthesized magnetite (Fe3O4) and greigite (Fe3S4). The structures of Fe3O4 and Fe3S4 were characterized by XRD and EPR, the electron transfer properties of Fe3O4 and Fe3S4 were analyzed by electrochemical workstation, XPS and DFT. It is revealed that the effective benzene removal rate of 88.86% in the Fe3S4/H2O2 was achieved, which compared to 15.58% obtainable from the Fe3O4/H2O2, with the apparent rate constant in the Fe3S4/H2O2 being approximately 65 times over that in the Fe3O4/H2O2. The better H2O2 activation by Fe3S4 was attributed to the significant roles of S (-II) and S vacancies in regulating the dissolution of ferrous iron ions, thus generating abundant free •OH radical. In addition, surface bounded ferrous iron of Fe3S4 could transfer more electrons to H2O2 and O2 to generate more surface bounded •OH and •O2-. This study revealed the combined action of dissolved and surface bounded ferrous iron of greigite on H2O2 activation, and provides an efficient heterogeneous H2O2 activator for the remediation of organic contaminants in groundwater.
Collapse
Affiliation(s)
- Cong Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Nanjing, 210008, China
| | - Linbo Qian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Nanjing, 210008, China.
| | - Hangyu Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Nanjing, 210008, China
| | - Xinzhu Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Nanjing, 210008, China
| | - Tao Zheng
- School of Environmental Studies, China University of Geosciences, Wuhan, 430078, China
| | - Mengfang Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Jiangsu Engineering Laboratory for Soil and Groundwater Remediation of Contaminated Sites, Nanjing, 210008, China.
| |
Collapse
|
10
|
Wu X, Yang J, Liu S, He Z, Wang Y, Qin W, Si Y. Enhanced generation of reactive oxygen species by pyrite for As(III) oxidation and immobilization: The vital role of Fe(II). CHEMOSPHERE 2022; 309:136793. [PMID: 36220433 DOI: 10.1016/j.chemosphere.2022.136793] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
The migration and conversion of arsenic in the environment usually accompany by the redox of iron-bearing minerals. For instance, the oxidation of pyrite can generate reactive oxygen species (ROS) affecting the species of arsenic, but the types and roles of ROS have been unclear. This paper demonstrated the vital role of Fe(II) in the pyrite for the formation of ROS. Results showed that exogenous addition of Fe(II) significantly enhanced the removal rate of As(III) by pyrite. 2,2'-bipyridine (BPY) decreased the oxidation of As(III) by complexing with Fe2+ in solution, whilst EDTA enhanced the oxidation of As(III) by boosting the autoxidation of Fe2+. In addition, neutral pH is superior for the oxidation of As(III) and removal of total arsenic. Importantly, Methanol, SOD enzyme and PMOS inhibited 54%, 28% and 17.5% of As(III) oxidation, respectively, which indicated O2•- and •OH were the main contributors to As(III) oxidation, and Fe(IV) contributed a small part of As(III) oxidation. The content of As(V) in the FeS2-Fe2+-As(III) system was higher than that in the FeS2-As(III) system, further confirming the vital role of Fe(II) for As(III) oxidation. Lepidocrocite was produced in a single Fe2+ system, which was not detected in the FeS2-As(III) system. Thus, the presence of mineral surfaces changed the oxidation products of Fe2+ and accelerated the oxidation and immobilization of As(III). FA (Fulvic Acid) and HA (Humic Acid) accelerated the oxidation of As(III), but the oxidation of As(III) by pyrite was inhibited to a certain extent, with increasing phenolic hydroxyl groups in phenolic acid. Our findings provide new insight into the oxidative species in the pyrite-Fe(II) system and will help guide the remediation of arsenic pollution in complex environmental systems.
Collapse
Affiliation(s)
- Xiaoju Wu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Jiamin Yang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Shangyan Liu
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Zhiwei He
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Yaoyao Wang
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China
| | - Wenxiu Qin
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| | - Youbin Si
- Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
11
|
Gao W, Tan Y, Wu B, Chen Y, Hu Z, Wang Y, Wen Y, Zhou Z, Zhou N. Nano-Fe1−xS embedded BCAA/Fe3O4 as the stabilized catalyst for simultaneous quinclorac oxidation and Cr(VI) reduction. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
12
|
Graphite particles as third electrodes to enhance metal removal and energy saving in a stationary electrodialytic soil system. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.139896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|