1
|
Noda I, Park Y, Jung YM. Correlation Filters to Streamline Analysis of Congested Spectral Datasets. APPLIED SPECTROSCOPY 2025:37028251320106. [PMID: 40094930 DOI: 10.1177/00037028251320106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
The correlation filter (CF) technique is introduced as a versatile tool for data pretreatment to selectively attenuate interfering or overlapping signals of congested spectra. This technique leverages two-dimensional correlation spectroscopy (2D-COS) to create a filter multiplier that effectively addresses limitations inherent in traditional null-space projection (NSP) methods based on least-squares subtraction. We apply CF to the analysis of a model solution mixture system undergoing spontaneous evaporation, where volatile solvent concentrations change concurrently but at only slightly different rates. Despite the similarity of these parallel processes, CF successfully separates the overlapped dynamics of individual components by attenuating dominant signal contributions. CF also enables streamlined 2D codistribution spectroscopy (2D-CDS) analysis to determine the sequential order of component appearance. Multiple layers of CF can be applied to isolate individual component dynamics. Heterocomponent 2D correlation can then recover lost information by recombining CF-treated spectra. CF is applicable to two-trace two-dimensional (2T2D) correlation for comparative spectral analysis of a pair of spectra. CF treatment is expected to be a useful tool beyond 2D-COS applicable to many areas of spectral analyses, including the environmental and interfacial studies.
Collapse
Affiliation(s)
- Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware 19716, USA
| | - Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
2
|
Park Y, Noda I, Jung YM. Diverse Applications of Two-Dimensional Correlation Spectroscopy (2D-COS). APPLIED SPECTROSCOPY 2024:37028241256397. [PMID: 38835153 DOI: 10.1177/00037028241256397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
This second of the two-part series of a comprehensive survey review provides the diverse applications of two-dimensional correlation spectroscopy (2D-COS) covering different probes, perturbations, and systems in the last two years. Infrared spectroscopy has maintained its top popularity in 2D-COS over the past two years. Fluorescence spectroscopy is the second most frequently used analytical method, which has been heavily applied to the analysis of heavy metal binding, environmental, and solution systems. Various other analytical methods including laser-induced breakdown spectroscopy, dynamic mechanical analysis, differential scanning calorimetry, capillary electrophoresis, seismologic, and so on, have also been reported. In the last two years, concentration, composition, and pH are the main effects of perturbation used in the 2D-COS fields, as well as temperature. Environmental science is especially heavily studied using 2D-COS. This comprehensive survey review shows that 2D-COS undergoes continuous evolution and growth, marked by novel developments and successful applications across diverse scientific fields.
Collapse
Affiliation(s)
- Yeonju Park
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| | - Isao Noda
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, USA
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, and Kangwon Radiation Convergence Research Support Center, Kangwon National University, Chuncheon, Korea
| |
Collapse
|
3
|
Guo M, Wang F, Guo W, Tian R, Pan T, Lu P. Investigation of the adsorption of pymetrozine on the Au@AgNPs surface and its application in the rapid detection of pymetrozine residues in apple. Food Chem X 2022; 16:100487. [PMID: 36519097 PMCID: PMC9743156 DOI: 10.1016/j.fochx.2022.100487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/09/2022] [Accepted: 10/21/2022] [Indexed: 11/09/2022] Open
Abstract
Pymetrozine is widely used in agriculture to control pests, and its residue may pose a threat to humans. In this study, the adsorption behavior of pymetrozine on Au@AgNPs surfaces in different solutions was investigated by calculation of ACD/Labs, density functional theory, UV-vis spectra, zeta potential and surface-enhanced Raman scattering. Then, a SERS method for detection of pymetrozine residues in apples was established based on the adsorption study. The results showed that pymetrozine was adsorbed on Au@AgNPs surface in different forms in various solutions and high SERS sensitivity of pymetrozine was obtained by the synergistic effect of pymetrozine, Au@AgNPs and NaOH. A simple SERS method has been established to detect pymetrozine in apples with a LOD of 0.038 mg/kg, linear range of 0.05-1.00 mg/kg, recovery of 71.93-117.49 % and RSD low than 11.70 %. This study provides a reference for rapid detection of pymetrozine in agricultural products.
Collapse
Affiliation(s)
- Meiting Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Fang Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wang Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Run Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tingtiao Pan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Ping Lu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
4
|
Terry LR, Sanders S, Potoff RH, Kruel JW, Jain M, Guo H. Applications of surface-enhanced Raman spectroscopy in environmental detection. ANALYTICAL SCIENCE ADVANCES 2022; 3:113-145. [PMID: 38715640 PMCID: PMC10989676 DOI: 10.1002/ansa.202200003] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/18/2022] [Accepted: 02/22/2022] [Indexed: 06/11/2024]
Abstract
As the human population grows, the anthropogenic impacts from various agricultural and industrial processes produce unwanted contaminants in the environment. The accurate, sensitive and rapid detection of such contaminants is vital for human health and safety. Surface-enhanced Raman spectroscopy (SERS) is a valuable analytical tool with wide applications in environmental contaminant monitoring. The aim of this review is to summarize recent advancements within SERS research as it applies to environmental detection, with a focus on research published or accessible from January 2021 through December 2021 including early-access publications. Our goal is to provide a wide breadth of information that can be used to provide background knowledge of the field, as well as inform and encourage further development of SERS techniques in protecting environmental quality and safety. Specifically, we highlight the characteristics of effective SERS nanosubstrates, and explore methods for the SERS detection of inorganic, organic, and biological contaminants including heavy metals, pharmaceuticals, plastic particles, synthetic dyes, pesticides, viruses, bacteria and mycotoxins. We also discuss the current limitations of SERS technologies in environmental detection and propose several avenues for future investigation. We encourage researchers to fill in the identified gaps so that SERS can be implemented in a real-world environment more effectively and efficiently, ultimately providing reliable and timely data to help and make science-based strategies and policies to protect environmental safety and public health.
Collapse
Affiliation(s)
- Lynn R. Terry
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Sage Sanders
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Rebecca H. Potoff
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Jacob W. Kruel
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Manan Jain
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| | - Huiyuan Guo
- Department of ChemistryState University of New York at BinghamtonBinghamtonNew YorkUSA
| |
Collapse
|
5
|
Fu C, Wang Y, Tian X, Wu Y, Cao H, Li Y, Jung YM. Horseradish peroxidase-repeat assay based on tyramine signal amplification for highly sensitive H 2O 2 detection by surface-enhanced Raman scattering. Analyst 2021; 146:7320-7326. [PMID: 34762076 DOI: 10.1039/d1an01705e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A new and simple surface-enhanced Raman scattering (SERS) biosensor based on the tyramine signal amplification (TSA)-triggered formation of horseradish peroxidase (HRP) repeats on a gold sensing chip was designed for the highly sensitive detection of hydrogen peroxide (H2O2). Initially, gold wafers were functionalized with HRP as sensing chips. Then, the HRP immobilized on the chips triggers the TSA reaction to transform the tyramine-HRP conjugate into a tyramine-HRP repeat array. With the aid of the target H2O2, the HRP repeats catalyze the oxidation of o-phenylenediamine (OPD) and produce an enzyme catalytic product with a different chemical structure, thus altering the fingerprint of the SERS spectra from that of OPD. H2O2 can be quantitatively analyzed according to the change in SERS signal intensity. On the basis of the TSA strategy, the proposed method allows the detection of H2O2 with a limit of detection (LOD) of 0.8 × 10-8 M. The as-prepared SERS sensor can achieve high-sensitivity H2O2 detection with a small amount of sample for each analysis. Therefore, this sensor exhibits significant potential for application in bioanalysis.
Collapse
Affiliation(s)
- Cuicui Fu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Yuqiu Wang
- MOE Key laboratory of Laser Life Science & Institute of Laser Life Science College of Biophotonics, South China Normal University, Guangzhou 510631, P. R. China.
| | - Xue Tian
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Yan Wu
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Haiyan Cao
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Yangyang Li
- Chongqing Key Laboratory of Inorganic Special Functional Materials, College of Chemistry and Chemical Engineering, Yangtze Normal University, Fuling, Chongqing 408100, P. R. China.
| | - Young Mee Jung
- Department of Chemistry, Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon, Gangwon 24341, Korea.
| |
Collapse
|