1
|
Miras J, Vílchez S, Bouju C, Blanco-Pérez M, Ros-Espinal M, Rodríguez-Abreu C, Esquena J. Formation of water-in-water emulsions and microgels in nonionic surfactant + gelatin aqueous mixtures. J Colloid Interface Sci 2025; 684:319-330. [PMID: 39798428 DOI: 10.1016/j.jcis.2024.12.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
HYPOTHESIS Water-in-water (W/W) emulsions can be obtained when two water-soluble components are mutually immiscible. The scientific literature on W/W emulsions focuses on polymer-polymer mixtures, with only a few reports on polymer-salt systems, and no documented cases involving polymer-surfactant mixtures. Our hypothesis was that by lowering the cloud temperature of a surfactant through the addition of a polymer, phase segregation into two immiscible aqueous solutions could enable the formation of W/W emulsions. EXPERIMENTS The system composed of an ethoxylated triglyceride surfactant (Kolliphor ELP) and gelatin was selected. The effect of gelatin on the surfactant's cloud temperature was assessed. Water-in-water (W/W) emulsions were prepared by stirring biphasic mixtures at temperatures above gelatin's gelation point. Gelatin microgels were formed by cooling down gelatin-in-Kolliphor W/W emulsions. Mucin particles were incorporated to improve the colloidal stability of these emulsions and genipin, a natural reagent, was added to produce crosslinked microgels. FINDINGS The addition of gelatin lowered the cloud temperature of the surfactant, resulting in the formation of two aqueous phases: a surfactant-rich solution and a gelatin-rich solution, which enabled the preparation of W/W emulsions. Chemically crosslinked microgels were successfully obtained by cooling down gelatin-in-surfactant emulsions, crosslinking with genipin and stabilized with mucin microparticles. To the best of our knowledge, this is the first report of W/W emulsions based on polymer-surfactant mixtures, unlike most W/W emulsions reported in the literature, which rely on immiscibility between two polymers in aqueous solutions.
Collapse
Affiliation(s)
- Jonathan Miras
- Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, ISCIII), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Susana Vílchez
- Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, ISCIII), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Cyprien Bouju
- Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; ChimieParisTech - PSL, 11 Pierre et Marie Curie, 75231 Paris, France
| | - Martí Blanco-Pérez
- Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Institut Escola del treball, Comte Urgell 187, 08036 Barcelona, Spain
| | - Marc Ros-Espinal
- Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; IQS School of Engineering, Universitat Ramon Llull, Via Augusta, 390. 08017 Barcelona, Spain
| | - Carlos Rodríguez-Abreu
- Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, ISCIII), Jordi Girona, 18-26, 08034 Barcelona, Spain
| | - Jordi Esquena
- Institute of Advanced Chemistry of Catalonia (IQAC), Consejo Superior de Investigaciones Científicas (CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN, ISCIII), Jordi Girona, 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
2
|
Chen Y, Hou Y, Chen J, Bai J, Du L, Qiu C, Qi H, Liu X, Huang J. Construction of Large-Scale Bioengineered Hair Germs and In Vivo Transplantation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2416361. [PMID: 40042061 PMCID: PMC12021125 DOI: 10.1002/advs.202416361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/21/2025] [Indexed: 04/26/2025]
Abstract
Hair follicle (HF) regeneration technology holds promise for treating hair loss, but creating a biomimetic structure that mimics the natural follicle microenvironment remains challenging. Here a novel bioengineered hair germ (BHG) is developed using thermodynamically incompatible mucopolysaccharides to enhance HF regeneration efficiency. Mucopolysaccharide-based hydrogels are synthesized by grafting amino and diethylamino groups (dihydroxyphenylalanine-grafted hyaluronic acid (HME) hydrogels) for rapid gelation and strong wetting adhesion. Dual-layered microspheres are fabricated using a co-flow microfluidic system, with HME as the outer shell and gelatin methacrylate (GelMA) as the core, achieving thermodynamic incompatibility. The Wnt3a protein is encapsulated for sustained release. RNA sequencing, reverse transcription quantitative polymerase chain reaction (RT-qPCR), and functional validation are used to study the molecular mechanisms of HF regeneration. Results show that HME hydrogels exhibit excellent adhesion, shear-thinning behavior, and biocompatibility. The microspheres release Wnt3a for up to 9 days, with high-throughput sequencing revealing upregulation of HF regeneration genes like Ctnnb1 and Lef1, and activation of the Wnt signaling pathway, while hypoxia-related genes such as Hif-1ɑ are downregulated. Pathway enrichment analyses confirm the enrichment of HF regeneration pathways. In conclusion, the HME-based BHG microspheres effectively promote in vivo HF regeneration, offering a promising solution for hair loss treatment and regeneration.
Collapse
Affiliation(s)
- Yangpeng Chen
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yuhui Hou
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jiejian Chen
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Department of Medical OncologyGuangzhou First People's HospitalGuangzhou Medical UniversityGuangdong510180China
| | - Jiaojiao Bai
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
- Department of HaematologyGuangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences)GuangzhouGuangdong510030China
| | - Lijuan Du
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Chen Qiu
- Department of OncologyShanghai General Hospital650 Xinsongjiang RoadSongjiang DistrictShanghai201620China
| | - Hanzhou Qi
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Xuanbei Liu
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Junfei Huang
- Department of Plastic and Aesthetic SurgeryDepartment of HematologyNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| |
Collapse
|
3
|
Heidari-Dalfard F, Tavasoli S, Assadpour E, Miller R, Jafari SM. Surface modification of particles/nanoparticles to improve the stability of Pickering emulsions; a critical review. Adv Colloid Interface Sci 2025; 336:103378. [PMID: 39671888 DOI: 10.1016/j.cis.2024.103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/30/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
Pickering emulsions (PEs) are dispersions stabilized by solid particles, which are derived from various materials, both organic (proteins, polysaccharides, lipids) and inorganic (metals, silica, metal oxides). These colloidal particles play a critical role in ensuring the stability and functionality of PEs, making them highly valued across multiple industries due to their enhanced stability and lower toxicity compared to conventional emulsions. The stabilization mechanisms in PEs differ from those in emulsions stabilized by surfactants or biopolymers. The stability of PEs is influenced by intrinsic particle properties, such as wettability, size, shape, deformability, and charge, as well as external conditions like pH, salinity, and temperature. Some particles, especially organic ones, alone may not be effective stabilizers. For instance, many polysaccharides inherently lack surface activity, while most proteins have significant surface activity but often become unstable under environmental stresses, potentially leading to emulsion instability. The chemical composition and morphology of the particles can lead to varying properties, particularly wettability, which plays a vital role in their ability to adsorb at interfaces. As a result, surface modification emerges as an essential approach for improving the effectiveness of particles as stabilizers in PEs. This review presents the mechanisms that stabilize PEs, identifies factors influencing the stability of PEs, and discusses physical and chemical techniques for modifying particle surfaces. There has been a significant advance in understanding surface modification, employing both physical (non-covalent bonds) and chemical (covalent bonds) approaches. These insights are invaluable for optimizing PE formulations, broadening their application potential across various fields.
Collapse
Affiliation(s)
- Fatemeh Heidari-Dalfard
- Food Science and Technology Department, Faculty of Agriculture, University of Jiroft, Jiroft, Iran
| | - Sedighe Tavasoli
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Elham Assadpour
- Food Industry Research Co, Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Reinhard Miller
- TU Darmstadt, Institute for Condensed Matter Physics, Hochschulstrasse 8, 64289 Darmstadt, Germany
| | - Seid Mahdi Jafari
- Faculty of Food Science and Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Halal Research Center of IRI, Iran Food and Drug Administration, Ministry of Health and Medical Education, Tehran, Iran.
| |
Collapse
|
4
|
Luo T, Wei Z, Xue C. Novel food-grade water-in-water emulsion fabricated by amylopectin and tara gum: Property evaluation and stability analysis. Carbohydr Polym 2025; 348:122937. [PMID: 39567153 DOI: 10.1016/j.carbpol.2024.122937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/25/2024] [Accepted: 10/29/2024] [Indexed: 11/22/2024]
Abstract
To surmount the limitation of the instability of the currently reported water-in-water (W/W) emulsions, novel W/W emulsionss were constructed using amylopectin (AMP) and tara gum (TG) as the phases, and differently shaped ovalbumin (OVA) particles were used as stabilizers to improve the stability of W/W emulsions. Experiments displayed that the conformation of OVA could be changed by heating treatment, thus forming fibrous or spherical OVA particles that had the potential to stabilize TG-in-AMP (TG/AMP) emulsions. The emulsions had the best stability when the pH was 4 and the concentration of OVA particles was 3 %. Moreover, since ovalbumin fibril (OVAF) had better adsorption at the water-water interface than ovalbumin sphere (OVAS), OVAF-stabilized TG/AMP emulsion (OF-TE) had a relatively denser interfacial layer and exhibited more satisfactory ionic stability and physical stability than OVAS-stabilized TG/AMP emulsion (OS-TE). The rheological results demonstrated that OVAF and OVAS had little effect on the viscosity of TG/AMP emulsions. In brief, OVAF was more effective in improving the stability of TG/AMP emulsions than OVAS, and OF-TE did not show phase separation for at least 5 days. This study may be of great significance in improving the stability of food-grade W/W emulsions.
Collapse
Affiliation(s)
- Tian Luo
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zihao Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| | - Changhu Xue
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| |
Collapse
|
5
|
Yang Q, Cui Y, Sun X, Jiang L, Yao T, Lv Y, Tu P, Hu B, Wang L. Preparation and characterization of PEG-Dex macromolecular schiff base particles and their application on the stabilization of water-in-water emulsion. Sci Rep 2024; 14:31519. [PMID: 39733083 DOI: 10.1038/s41598-024-83275-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 12/12/2024] [Indexed: 12/30/2024] Open
Abstract
In this study, polyethylene glycol (PEG) and dextran (Dex) were chemically modified to obtain amino-functionalized PEG (PEG-(NH2)2) and oxidized dextran (ODex). They were subsequently reacted via -NH2 and -CHO groups to synthesize a macromolecular Schiff base particle. The structures, morphologies, and thermal properties of the macromolecular Schiff base particle were characterized using Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and thermogravimetry analysis (TGA). The macromolecular Schiff base particle was then employed as a stabilizer to stabilize Dex/PEG water-in-water (W/W) emulsions, and the effects of stabilizer composition, concentration, and dextran oxidation degree on emulsion phase separation and microstructure were investigated. The results from the laser particle size analyzer indicate that the macromolecular Schiff base stabilizers have particle sizes ranging from 100 to 200 nm and exhibit an interpenetrating network structure, as observed in SEM images. A decrease in emulsion droplet size was observed with increasing mass ratio of PEG-(NH2)2 to ODex, ODex oxidation degree, and stabilizer concentration. Rheological analysis showed that the viscosity of W/W emulsions decreased with increasing shear rate. Contact angle measurements indicated that the macromolecular Schiff base stabilizers preferentially interacted with the continuous phase of PEG, thereby promoting emulsion stability.
Collapse
Affiliation(s)
- Qian Yang
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yanjun Cui
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| | - Xiaoliang Sun
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Libo Jiang
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Tuo Yao
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Ministry of Education, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yangyang Lv
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Peng Tu
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Bing Hu
- Institute of Agricultural Resources Chemistry and Application, College of Science, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Liyuan Wang
- Gansu Provincial Ecological Environment Engineering Assessment Center, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
6
|
Wei Y, Cai Z, Liu Z, Liu C, Kong T, Li Z, Song Y. All-aqueous synthesis of alginate complexed with fibrillated protein microcapsules for membrane-bounded culture of tumor spheroids. Carbohydr Polym 2024; 345:122580. [PMID: 39227124 DOI: 10.1016/j.carbpol.2024.122580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/09/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Water-in-water (W/W) emulsions provide bio-compatible all-aqueous compartments for artificial patterning and assembly of living cells. Successful entrapment of cells within a W/W emulsion via the formation of semipermeable capsules is a prerequisite for regulating on the size, shape, and architecture of cell aggregates. However, the high permeability and instability of the W/W interface, restricting the assembly of stable capsules, pose a fundamental challenge for cell entrapment. The current study addresses this problem by synthesizing multi-armed protein fibrils and controlling their assembly at the W/W interface. The multi-armed protein fibrils, also known as 'fibril clusters', were prepared by cross-linking lysozyme fibrils with multi-arm polyethylene glycol (PEG) via click chemistry. Compared to linear-structured fibrils, fibril clusters are strongly adsorbed at the W/W interface, forming an interconnected meshwork that better stabilizes the W/W emulsion. Moreover, when fibril clusters are complexed with alginate, the hybrid microcapsules demonstrate excellent mechanical robustness, semi-permeability, cytocompatibility and biodegradability. These advantages enable the encapsulation, entrapment and long-term culture of tumor spheroids, with great promise for applications for anti-cancer drug screening, tumor disease modeling, and tissue repair engineering.
Collapse
Affiliation(s)
- Yue Wei
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Zhixiang Cai
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan, Zhejiang 314100, China.
| | - Zhou Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Changkun Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518071, China
| | - Tiantian Kong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong 518071, China.
| | - Zhiwei Li
- Department of Orthopedic Trauma, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Yang Song
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
7
|
Sharma K, Deng H, Banerjee P, Peng Z, Gum J, Baldelli A, Jasieniak J, Meagher L, Martino MM, Gundabala V, Alan T. High precision acoustofluidic synthesis of stable, biocompatible water-in-water emulsions. ULTRASONICS SONOCHEMISTRY 2024; 111:107120. [PMID: 39481289 PMCID: PMC11564041 DOI: 10.1016/j.ultsonch.2024.107120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/13/2024] [Accepted: 10/20/2024] [Indexed: 11/02/2024]
Abstract
Water-in-water (w/w) emulsions, comprising aqueous droplets within another continuous aqueous phase, rely on a low interfacial tension for stability. Thus far, it has been challenging to control their size and stability without the use of stabilizers. In this study, we introduce a microfluidic technique that addresses these challenges, producing stable w/w emulsions with precisely controlled size and uniformity. Results shows that using an acoustically actuated microfluidic mixer, PEG, Dextran, and alginate solutions (84.66 mPa.s viscosity difference) were homogenized rapidly, forming uniformly distributed w/w emulsions stabilized in alginate gels. The emulsion size, uniformity, and shear sensitivity can be tuned by modifying the alginate concentration. Biocompatibility was evaluated by monitoring the viability of kidney cells in the presence of emulsions and gels. In conclusion, this study not only showed emulsion formation with a high mixing efficiency exceeding 90 % for all viscosities, actuated at an optimized frequency of 1.064 MHz, but also demonstrated that an aqueous, solvent, and emulsifier-free composition exhibited remarkable biocompatibility, holding promise for precise drug delivery, cosmetics, and food applications.
Collapse
Affiliation(s)
- Kajal Sharma
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia; Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Hao Deng
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia; Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Parikshit Banerjee
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Zaimao Peng
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Jackson Gum
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Alberto Baldelli
- Faculty of Agriculture and Food Sustainability, The University of Queensland, St Lucia 4072, Queensland, Australia
| | - Jacek Jasieniak
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Laurence Meagher
- Department of Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Mikaël M Martino
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Venkat Gundabala
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Bombay, Powai, Mumbai 400076, India
| | - Tuncay Alan
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, VIC 3800, Australia.
| |
Collapse
|
8
|
Gonçalves RC, Oliveira MB, Mano JF. Exploring the potential of all-aqueous immiscible systems for preparing complex biomaterials and cellular constructs. MATERIALS HORIZONS 2024; 11:4573-4599. [PMID: 39010747 DOI: 10.1039/d4mh00431k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
All-aqueous immiscible systems derived from liquid-liquid phase separation of incompatible hydrophilic agents such as polymers and salts have found increasing interest in the biomedical and tissue engineering fields in the last few years. The unique characteristics of aqueous interfaces, namely their low interfacial tension and elevated permeability, as well as the non-toxic environment and high water content of the immiscible phases, confer to these systems optimal qualities for the development of biomaterials such as hydrogels and soft membranes, as well as for the preparation of in vitro tissues derived from cellular assembly. Here, we overview the main properties of these systems and present a critical review of recent strategies that have been used for the development of biomaterials with increased levels of complexity using all-aqueous immiscible phases and interfaces, and their potential as cell-confining environments for micropatterning approaches and the bioengineering of cell-rich structures. Importantly, due to the relatively recent emergence of these areas, several key design considerations are presented, in order to guide researchers in the field. Finally, the main present challenges, future directions, and adaptability to develop advanced materials with increased biomimicry and new potential applications are briefly evaluated.
Collapse
Affiliation(s)
- Raquel C Gonçalves
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
9
|
Yu S, Peng G, Jiao J, Liu P, Li H, Xi J, Wu D. Chitin nanocrystals-stabilized emulsion as template for fabricating injectable suspension containing polylactide hollow microspheres. Carbohydr Polym 2024; 337:122176. [PMID: 38710562 DOI: 10.1016/j.carbpol.2024.122176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/08/2024]
Abstract
One of the promising applications of rod-like chitin nanocrystals (ChNCs) is the use as particle emulsifier to develop Pickering emulsions. We reported a ChNC-stabilized oil-in-water emulsion system, and developed a Pickering emulsion-templated method to prepare polylactide (PLA) hollow microspheres here. The results showed that both non-modified ChNCs and acetylated ChNCs could well emulsify the dichloromethane (DCM) solution of PLA-in-aqueous mannitol solution systems, forming very stable emulsions. At the same oil-to-water ratios and ChNC loadings, the emulsion stability was improved with increasing acetylation levels of ChNCs, accompanied by reduced size of droplets. Through the solvent evaporation, the PLA hollow microspheres were templated successfully, and the surface structure was also strongly dependent on the acetylation level of ChNCs. At a low level of acetylation, the single-hole or multi-hole surface structure formed, which was attributed to the out-diffusion of DCM caused by the solvent extraction and evaporation. These surface defects decreased with increased acetylation levels of ChNCs. Moreover, the aqueous suspension with as-obtained PLA microspheres revealed shear-thinning property and good biocompatibility, thereby had promising application as injectable fillers. This work can provide useful information around tuning surface structures of the Pickering emulsion-templated polymer hollow microspheres by regulating acetylation level of ChNCs.
Collapse
Affiliation(s)
- Sumin Yu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Guangni Peng
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Jiali Jiao
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Peng Liu
- Shanghai Isiris Medical Co. Ltd., Shanghai 201400, PR China
| | - Huajun Li
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Juqun Xi
- Medical College, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
10
|
Lu Y, Zhang Y, Zhang R, Gao Y, Miao S, Mao L. Different interfaces for stabilizing liquid-liquid, liquid-gel and gel-gel emulsions: Design, comparison, and challenges. Food Res Int 2024; 187:114435. [PMID: 38763682 DOI: 10.1016/j.foodres.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Interfaces play essential roles in the stability and functions of emulsion systems. The quick development of novel emulsion systems (e.g., water-water emulsions, water-oleogel emulsions, hydrogel-oleogel emulsions) has brought great progress in interfacial engineering. These new interfaces, which are different from the traditional water-oil interfaces, and are also different from each other, have widened the applications of food emulsions, and also brought in challenges to stabilize the emulsions. We presented a comprehensive summary of various structured interfaces (stabilized by mixed-layers, multilayers, particles, nanodroplets, microgels etc.), and their characteristics, and designing strategies. We also discussed the applicability of these interfaces in stabilizing liquid-liquid (water-oil, water-water, oil-oil, alcohol-oil, etc.), liquid-gel, and gel-gel emulsion systems. Challenges and future research aspects were also proposed regarding interfacial engineering for different emulsions. Emulsions are interface-dominated materials, and the interfaces have dynamic natures, as the compositions and structures are not constant. Biopolymers, particles, nanodroplets, and microgels differed in their capacity to get absorbed onto the interface, to adjust their structures at the interface, to lower interfacial tension, and to stabilize different emulsions. The interactions between the interface and the bulk phases not only affected the properties of the interface, but also the two phases, leading to different functions of the emulsions. These structured interfaces have been used individually or cooperatively to achieve effective stabilization or better applications of different emulsion systems. However, dynamic changes of the interface during digestion are only poorly understood, and it is still challenging to fully characterize the interfaces.
Collapse
Affiliation(s)
- Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Colloids and Bioprocessing Group, School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK
| | - Yanhui Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ruoning Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yanxiang Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Like Mao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
11
|
Waldmann L, Nguyen DNT, Arbault S, Nicolai T, Benyahia L, Ravaine V. Tuning the bis-hydrophilic balance of microgels: A tool to control the stability of water-in-water emulsions. J Colloid Interface Sci 2024; 653:581-593. [PMID: 37738931 DOI: 10.1016/j.jcis.2023.09.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/01/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
HYPOTHESIS The stability of purely aqueous emulsions (W/W) formed by mixing incompatible polymers, can be achieved through the Pickering effect of particles adsorption at the interface. However, there is, as yet, no guideline regarding the chemical nature of the particles to predict whether they will stabilize a particular W/W emulsion. Bis-hydrophilic soft microgels, made of copolymerized poly(N-isopropylacrylamide) (pNIPAM) and dextran (Dex), act as very efficient stabilizers for PEO/Dextran emulsions, because the two polymers have an affinity for each polymer phase. EXPERIMENTS The ratio between both components of the microgels is varied in order to modulate the bis-hydrophilic balance, the content of Dex compared to pNIPAM varying from 0 to 60 wt%. The partition between the two aqueous phases and the adsorption of microgels at the W/W interface is measured by confocal microscopy. The stability of emulsions is assessed via turbidity measurements and microstructural investigations under sedimentation or compression. FINDINGS The adsorption of particles and their partitioning is found to evolve progressively as a function of bis-hydrophilic balance. At room temperature, the stability of the resulting W/W emulsions also depends on the bis-hydrophilic balance with a maximum of stability for the particles containing 50%wt of Dex, for the Dex-in-PEO emulsions, while the PEO-in-Dex become stable above this value. The thermo-responsiveness of the microgels translates into stability inversion of the emulsions below 50 wt% of Dex in the microgels, whereas above 50 wt%, no emulsion is stable. This work paves the way of a guideline to design efficient and responsive W/W stabilizers.
Collapse
Affiliation(s)
- Léa Waldmann
- Bordeaux INP, ISM, UMR 5255 CNRS - Univ. Bordeaux, F-33400 Talence, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, F-33600 Pessac, France
| | - Do-Nhu-Trang Nguyen
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Stéphane Arbault
- Univ. Bordeaux, CNRS, Bordeaux INP, CBMN UMR 5248, F-33600 Pessac, France
| | - Taco Nicolai
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Lazhar Benyahia
- IMMM, UMR 6283 CNRS - Le Mans Université, Avenue Olivier Messiaen, 72085 Le Mans cedex 9, France
| | - Valérie Ravaine
- Bordeaux INP, ISM, UMR 5255 CNRS - Univ. Bordeaux, F-33400 Talence, France.
| |
Collapse
|
12
|
Zhang Y, Luo Y, Zhao J, Zheng W, Zhan J, Zheng H, Luo F. Emerging delivery systems based on aqueous two-phase systems: A review. Acta Pharm Sin B 2024; 14:110-132. [PMID: 38239237 PMCID: PMC10792979 DOI: 10.1016/j.apsb.2023.08.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/24/2023] [Accepted: 07/28/2023] [Indexed: 01/22/2024] Open
Abstract
The aqueous two-phase system (ATPS) is an all-aqueous system fabricated from two immiscible aqueous phases. It is spontaneously assembled through physical liquid-liquid phase separation (LLPS) and can create suitable templates like the multicompartment of the intracellular environment. Delicate structures containing multiple compartments make it possible to endow materials with advanced functions. Due to the properties of ATPSs, ATPS-based drug delivery systems exhibit excellent biocompatibility, extraordinary loading efficiency, and intelligently controlled content release, which are particularly advantageous for delivering drugs in vivo . Therefore, we will systematically review and evaluate ATPSs as an ideal drug delivery system. Based on the basic mechanisms and influencing factors in forming ATPSs, the transformation of ATPSs into valuable biomaterials is described. Afterward, we concentrate on the most recent cutting-edge research on ATPS-based delivery systems. Finally, the potential for further collaborations between ATPS-based drug-carrying biomaterials and disease diagnosis and treatment is also explored.
Collapse
Affiliation(s)
- Yaowen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yankun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingqi Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Wenzhuo Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jun Zhan
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu 610041, China
| | - Huaping Zheng
- Department of Dermatology, Rare Diseases Center, Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Feng Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Prosthodontics, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Yan S, Regenstein JM, Zhang S, Huang Y, Qi B, Li Y. Edible particle-stabilized water-in-water emulsions: Stabilization mechanisms, particle types, interfacial design, and practical applications. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
14
|
Ahmad A, Fazial FF, Khalil HPSA, Fazry S, Lazim A. Synthesis and characterization of sago starch nanocrystal laurate as a food grade particle emulsifier. Int J Biol Macromol 2023; 242:124816. [PMID: 37182623 DOI: 10.1016/j.ijbiomac.2023.124816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/27/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
Starch nanocrystals (SNCs) are tiny particles that possess unique qualities due to their small size, such as increased crystallinity, thin sheet structure, low permeability, and strong resistance to digestion. Although sago starch nanocrystals (SNCs) are naturally hydrophilic, their properties can be modified through chemical modifications to make them more versatile for various applications. In this study, the esterification process was used to modify SNCs using lauroyl chloride (LC) to enhance their surface properties. Three different ratios of LC to SNC were tested to determine the impact on the modified SNC (mSNC). The chemical changes in the mSNC were analyzed using FTIR and 1H NMR spectroscopy. ##The results showed that as the amount of LC increased, the degree of substitution (DS) also increased, which reduced the crystallinity of the mSNC and its thermal stability. However, the esterification process also improved the hydrophobicity of the SNC, making it more amphiphilic. The emulsification capabilities of the mSNC were investigated using a Pickering emulsion, and the results showed that the emulsion made from mSNC-1.0 had better stability than the one made from pristine SNC. This study highlights the potential of SNC as a particle emulsifier and demonstrates how esterification can improve its emulsification capabilities.
Collapse
Affiliation(s)
- Azfaralariff Ahmad
- Green Biopolymer, Coating and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia.
| | - Farah Faiqah Fazial
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis, Kampus UniCITI Alam, 02100 Padang Besar, Perlis, Malaysia
| | - H P S Abdul Khalil
- Green Biopolymer, Coating and Packaging Cluster, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia; Bioresource Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang 11800, Malaysia
| | - Shazrul Fazry
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia
| | - Azwan Lazim
- Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
15
|
Apostolidis E, Stoforos GN, Mandala I. Starch physical treatment, emulsion formation, stability, and their applications. Carbohydr Polym 2023; 305:120554. [PMID: 36737219 DOI: 10.1016/j.carbpol.2023.120554] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/18/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023]
Abstract
Pickering emulsions are increasingly preferred over typical surfactant-based emulsions due to several advantages, such as lower emulsifier usage, simplicity, biocompatibility, and safety. These types of emulsions are stabilized using solid particles, which produce a thick layer at the oil-water interface preventing droplets from aggregating. Starch nano-particles (SNPs) have received considerable attention as natural alternatives to synthetic stabilizers due to their unique properties. Physical formulation processes are currently preferred for SNP production since they are environmentally friendly procedures that do not require the use of chemical reagents. This review provides a thorough overview in a critical perspective of the physical processes to produce starch nano-particles used as Pickering emulsion stabilizers, fabricated by a 2-step process. Specifically, the reviewed physical approaches for nano-starch preparation include high hydrostatic pressure, high pressure homogenization, ultrasonication, milling and antisolvent precipitation. All the essential parameters used to evaluate the effectiveness of particles in stabilizing these systems are also presented in detail, including the hydrophobicity, size, and content of starch particles. Finally, this review provides the basis for future research focusing on physical nano-starch production, to ensure the widespread use of these natural stabilizers in the ever-evolving field of food technology.
Collapse
Affiliation(s)
- Eftychios Apostolidis
- Agricultural University of Athens, Dept. Food Science & Human Nutrition, Laboratory of Food Process Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece
| | - George N Stoforos
- Agricultural University of Athens, Dept. Food Science & Human Nutrition, Laboratory of Food Process Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece
| | - Ioanna Mandala
- Agricultural University of Athens, Dept. Food Science & Human Nutrition, Laboratory of Food Process Engineering, Iera Odos 75, 11855 Votanikos, Athens, Greece.
| |
Collapse
|
16
|
Esquena J. Recent advances on water-in-water emulsions in segregative systems of two water-soluble polymers. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
17
|
Zhu Y, Yuan C, Cui B, Guo L, Zhao M. Pickering emulsion stabilized by linear dextrins: Effect of the chain length. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.108298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
18
|
Aqueous two-phase emulsions toward biologically relevant applications. TRENDS IN CHEMISTRY 2022. [DOI: 10.1016/j.trechm.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
19
|
Daradmare S, Lee CS. Recent progress in the synthesis of all-aqueous two-phase droplets using microfluidic approaches. Colloids Surf B Biointerfaces 2022; 219:112795. [PMID: 36049253 DOI: 10.1016/j.colsurfb.2022.112795] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 12/21/2022]
Abstract
An aqueous two-phase system (ATPS) is a system with liquid-liquid phase separation and shows great potential for the extraction, separation, purification, and enrichment of proteins, membranes, viruses, enzymes, nucleic acids, and other biomolecules because of its simplicity, biocompatibility, and wide applicability [1-4]. The clear aqueous-aqueous interface of ATPSs is highly advantageous for their implementation, therefore making ATPSs a green alternative approach to replace conventional emulsion systems, such as water-in-oil droplets. All aqueous emulsions (water-in-water, w-in-w) hold great promise in the biomedical field as glucose sensors [5] and promising carriers for the encapsulation and release of various biomolecules and nonbiomolecules [6-10]. However, the ultralow interfacial tension between the two phases is a hurdle in generating w-in-w emulsion droplets. In the past, bulk emulsification and electrospray techniques were employed for the generation of w-in-w emulsion droplets and the fabrication of microparticles and microcapsules in the later stage. Bulk emulsification is a simple and low-cost technique; however, it generates polydisperse w-in-w emulsion droplets. Another technique, electrospray, involves easy experimental setups that can generate monodisperse but nonspherical w-in-w emulsion droplets. In comparison, microfluidic platforms provide monodisperse w-in-w emulsion droplets with spherical shapes, deal with the small volumes of solutions and short reaction times and achieve portability and versatility in their design through rapid prototyping. Owing to several advantages, microfluidic approaches have recently been introduced. To date, several different strategies have been explored to generate w-in-w emulsions and multiple w-in-w emulsions and to fabricate microparticles and microcapsules using conventional microfluidic devices. Although a few review articles on ATPSs emulsions have been published in the past, to date, few reviews have exclusively focused on the evolution of microfluidic-based ATPS droplets. The present review begins with a brief discussion of the history of ATPSs and their fundamentals, which is followed by an account chronicling the integration of microfluidic devices with ATPSs to generate w-in-w emulsion droplets. Furthermore, the stabilization strategies of w-in-w emulsion droplets and microfluidic fabrication of microparticles and microcapsules for modern applications, such as biomolecule encapsulation and spheroid construction, are discussed in detail in this review. We believe that the present review will provide useful information to not only new entrants in the microfluidic community wanting to appreciate the findings of the field but also existing researchers wanting to keep themselves updated on progress in the field.
Collapse
Affiliation(s)
- Sneha Daradmare
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea.
| |
Collapse
|
20
|
Peng G, Wu D. Insight into different roles of chitin nanocrystals and cellulose nanocrystals towards stabilizing Pickering emulsions. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Xia C, Han L, Zhang C, Xu M, Liu Z, Chen Y, Zhu Y, Yu M, Wu W, Yin S, Huang J, Zheng Z, Zhang R. Preparation and optimization of Pickering emulsion stabilized by alginate-lysozyme nanoparticles for β-carotene encapsulation. Colloid Polym Sci 2022. [DOI: 10.1007/s00396-022-05024-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Properties and stability of water-in-water emulsions stabilized by microfibrillated bacterial cellulose. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
23
|
Zhang W, Wang Y, Wu D. Mapping hierarchical networks of poly(vinyl alcohol)/cellulose nanofiber composite hydrogels via viscoelastic probes. Carbohydr Polym 2022; 288:119372. [PMID: 35450634 DOI: 10.1016/j.carbpol.2022.119372] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/15/2022] [Indexed: 11/02/2022]
Abstract
Discriminating the roles of different networks in the multiply cross-linked hydrogels is vital to optimize their overall performance. Poly(vinyl alcohol)/cellulose nanofiber composite hydrogels were used as template for the study. Three types of characteristic networks, including chemical network cross-linked with boronic ester bonds, physical network cross-linked with microcrystallites, and coexistence of these two networks, were constructed in the system, and the viscoelastic responses were used to detect the characteristic relaxation behavior of those networks. The physical network is more sensitive to stress-induced deformation, whereas the chemical network more sensitive to strain-induced one. The former has lower level of viscous dissipation and higher level of elastic storage as compared to the latter, and dominates linear viscoelasticity of hydrogels as the two networks coexist. Their synergistic effect can be well defined by the scaling behavior of hysteretic work. This work proposes an interesting method of probing networks in the multiply cross-linked hydrogels.
Collapse
Affiliation(s)
- Wenting Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Yuankun Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China
| | - Defeng Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu Province 225002, PR China; Provincial Key Laboratories of Environmental Materials & Engineering, Yangzhou, Jiangsu Province 225002, PR China.
| |
Collapse
|
24
|
Li Y, Wang R, Jiang H, Guan X, Yang C, Ngai T. Chitosan-coated phytoglycogen for preparation of biocompatible Pickering emulsions. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
López-Pedrouso M, Lorenzo JM, Moreira R, Franco D. Potential applications of Pickering emulsions and high internal phase emulsions (HIPEs) stabilized by starch particles. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2022.100866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|