1
|
Wang SM, Zhou S, Han SG, Ma DD, Wei W, Zhu QL. Improving CO 2 electroconversion by customizing the hydroxyl microenvironment around a semi-open Co-N 2O 2 configuration. J Colloid Interface Sci 2025; 678:630-638. [PMID: 39265335 DOI: 10.1016/j.jcis.2024.09.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/25/2024] [Accepted: 09/04/2024] [Indexed: 09/14/2024]
Abstract
Constructing local microenvironments is one of the important strategies to improve the electrocatalytic performances, such as in electrochemical CO2 reduction (ECR). However, effectively customizing these microenvironments remains a significant challenge. Herein, utilizing carbon nanotube (CNT) heterostructured semi-open Co-N2O2 catalytic configurations (Co-salophen), we have demonstrated the role of the local microenvironment on promoting ECR through regulating the location of hydroxyl groups. Concretely, compared with the maximum Faradaic efficiency (FE) of 62% for carbon monoxide (CO) presented by Co-salophen/CNT without a hydroxyl microenvironment, the designed Co-salophen-OH3/CNT, featuring hydroxyl groups at the Co-N2O2 structural opening, shows remarkable CO2-to-CO electroreduction activity across a wide potential window, with the FE of CO up to 95%. In particular, through the deuterium kinetic isotope experiments and theoretical calculations, we decoded that the hydroxyl groups act as a proton relay station, promoting the efficient transfer of protons to the Co-N2O2 active sites. The finding demonstrates a promising molecular design strategy for enhancing electrocatalysis.
Collapse
Affiliation(s)
- San-Mei Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350108, China
| | - Shenghua Zhou
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350108, China
| | - Shu-Guo Han
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350108, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China
| | - Dong-Dong Ma
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350108, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China.
| | - Wenbo Wei
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Qi-Long Zhu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences (CAS), Fuzhou 350108, China; School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Cui X, Wang X, Zhao L, Wang J, Kong T, Xiong Y. Bridging molecular photosensitizer and catalyst on carbon nanotubes toward enhanced selectivity and durability for CO 2 photoreduction. J Environ Sci (China) 2024; 140:157-164. [PMID: 38331497 DOI: 10.1016/j.jes.2023.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 02/10/2024]
Abstract
Homogenous molecular photocatalysts for CO2 reduction, especially metal complex-based photosensitizer‒catalyst assemblages, have been attracting extensive research interests due to their efficiency and customizability. However, their low durability and recyclability limit practical applications. In this work, we immobilized the catalysts of metal terpyridyl complexes and the photosensitizer of [Ru(bpy)3]Cl2 onto the surface of carbon nanotubes through covalent bonds and electrostatic interactions, respectively, transforming the homogeneous system into a heterogeneous one. Our characterizations prove that these metal complexes are well dispersed on CNTs with a high loading (ca. 12 wt.%). Photocatalytic measurements reveal that catalytic activity is remarkably enhanced when the molecular catalysts are anchored, which is three times higher than that of homogeneous molecular catalysts. Moreover, when the photosensitizer of [Ru(bpy)3]Cl2 is immobilized, the side reaction of hydrogen evolution is completely suppressed and the selectivity for CO production reaches 100%, with its durability also significantly improved. This work provides an effective pathway for constructing heterogeneous photocatalysts based on rational assembly of efficient molecular photosensitizers and catalysts.
Collapse
Affiliation(s)
- Xiaofeng Cui
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China
| | - Xueting Wang
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Lijun Zhao
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China
| | - Jixin Wang
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| | - Tingting Kong
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China.
| | - Yujie Xiong
- Anhui Engineering Research Center of Carbon Neutrality, The Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecular-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China; School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
3
|
Yang ZX, Wen X, Gao LJ, Zhang J, Wei RP, Pan XM, Xiao GM. Facilitating CO2 electroreduction to C2H4 through facile regulating {100} & {111} grain boundary of Cu2O. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2022.106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
4
|
Efficient electrochemical water oxidation mediated by different substituted manganese-salophen complexes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|