1
|
Xia Y, Zhang C, Xu Z, Lu S, Cheng X, Wei S, Yuan J, Sun Y, Li Y. Organic iontronic memristors for artificial synapses and bionic neuromorphic computing. NANOSCALE 2024; 16:1471-1489. [PMID: 38180037 DOI: 10.1039/d3nr06057h] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
To tackle the current crisis of Moore's law, a sophisticated strategy entails the development of multistable memristors, bionic artificial synapses, logic circuits and brain-inspired neuromorphic computing. In comparison with conventional electronic systems, iontronic memristors offer greater potential for the manifestation of artificial intelligence and brain-machine interaction. Organic iontronic memristive materials (OIMs), which possess an organic backbone and exhibit stoichiometric ionic states, have emerged as pivotal contenders for the realization of high-performance bionic iontronic memristors. In this review, a comprehensive analysis of the progress and prospects of OIMs is presented, encompassing their inherent advantages, diverse types, synthesis methodologies, and wide-ranging applications in memristive devices. Predictably, the field of OIMs, as a rapidly developing research subject, presents an exciting opportunity for the development of highly efficient neuro-iontronic systems in areas such as in-sensor computing devices, artificial synapses, and human perception.
Collapse
Affiliation(s)
- Yang Xia
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Zheng Xu
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Shuanglong Lu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xinli Cheng
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Shice Wei
- School of Microelectronics, Fudan University, Shanghai, 200433, China
| | - Junwei Yuan
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yanqiu Sun
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China
| | - Yang Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
McDonald SM, Yang Q, Hsu YH, Nikam SP, Hu Z, Wang Z, Asheghali D, Yen T, Dobrynin AV, Rogers JA, Becker ML. Resorbable barrier polymers for flexible bioelectronics. Nat Commun 2023; 14:7299. [PMID: 37949871 PMCID: PMC10638316 DOI: 10.1038/s41467-023-42775-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 10/20/2023] [Indexed: 11/12/2023] Open
Abstract
Resorbable, implantable bioelectronic devices are emerging as powerful tools to reliably monitor critical physiological parameters in real time over extended periods. While degradable magnesium-based electronics have pioneered this effort, relatively short functional lifetimes have slowed clinical translation. Barrier films that are both flexible and resorbable over predictable timelines would enable tunability in device lifetime and expand the viability of these devices. Herein, we present a library of stereocontrolled succinate-based copolyesters which leverage copolymer composition and processing method to afford tunability over thermomechanical, crystalline, and barrier properties. One copolymer composition within this library has extended the functional lifetime of transient bioelectronic prototypes over existing systems by several weeks-representing a considerable step towards translational devices.
Collapse
Affiliation(s)
| | - Quansan Yang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yen-Hao Hsu
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Shantanu P Nikam
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Ziying Hu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Zilu Wang
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Darya Asheghali
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Tiffany Yen
- Department of Chemistry, Duke University, Durham, NC, 27708, USA
| | - Andrey V Dobrynin
- Department of Chemistry, University of North Carolina-Chapel Hill, Chapel Hill, NC, 27599, USA
| | - John A Rogers
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering and Neurological Surgery, Northwestern University, Evanston, IL, 60208, USA.
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA.
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, 27708, USA.
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
- Department of Orthopedic Surgery, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
3
|
Yu P, Wang H, Li T, Wang G, Jia Z, Dong X, Xu Y, Ma Q, Zhang D, Ding H, Yu B. Mechanically Robust, Recyclable, and Self-Healing Polyimine Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300958. [PMID: 37088727 PMCID: PMC10323645 DOI: 10.1002/advs.202300958] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/29/2023] [Indexed: 05/03/2023]
Abstract
To achieve energy saving and emission reduction goals, recyclable and healable thermoset materials are highly attractive. Polymer copolymerization has been proven to be a critical strategy for preparing high-performance polymeric materials. However, it remains a huge challenge to develop high-performance recyclable and healable thermoset materials. Here, polyimine dynamic networks based on two monomers with bulky pendant groups, which not only displayed mechanical properties higher than the strong and tough polymers, e.g., polycarbonate, but also excellent self-repairing capability and recyclability as thermosets are developed. Owing to the stability of conjugation effect by aromatic benzene rings, the final polyimine networks are far more stable than the reported counterparts, exhibiting excellent hydrolysis resistance under both alkaline condition and most organic solvents. These polyimine materials with conjugation structure can be completely depolymerized into monomers recovery in an acidic aqueous solution at ambient temperature. Resulting from the bulky pendant units, this method allows the exchange reactions of conjugation polyimine vitrimer easily within minutes for self-healing function. Moreover, the introduction of trifluoromethyl diphenoxybenzene backbones significantly increases tensile properties of polyimine materials. This work provides an effective strategy for fabricating high-performance polymer materials with multiple functions.
Collapse
Affiliation(s)
- Ping Yu
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
- Jiangsu Marine Resources Development InstituteLianyungangJiangsu222005P. R. China
| | - Haiyue Wang
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Ting Li
- Shanghai Cedar Composites Technology Co., Ltd201306ShanghaiP. R. China
| | - Guimei Wang
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Zichen Jia
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Xinyu Dong
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Yang Xu
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Qilin Ma
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Dongen Zhang
- School of Environmental and Chemical EngineeringJiangsu Key Laboratory of Function Control Technology for Advanced MaterialsJiangsu Ocean UniversityLianyungangJiangsu222005P. R. China
| | - Hongliang Ding
- State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Bin Yu
- State Key Laboratory of Fire ScienceUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| |
Collapse
|
4
|
Wang K, Liu J, El-Khouly ME, Cui X, Che Q, Zhang B, Chen Y. Water-Soluble Polythiophene-Conjugated Polyelectrolyte-Based Memristors for Transient Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36987-36997. [PMID: 35943132 DOI: 10.1021/acsami.2c04752] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The key to protect sensitive information stored in electronic memory devices from disclosure is to develop transient electronic devices that are capable of being destroyed quickly in an emergency. By using a highly water-soluble polythiophene-conjugated polyelectrolyte PTT-NMI+Br- as an active material, which was synthesized by the reaction of poly[thiophene-alt-4,4-bis(6-bromohexyl)-4H-cyclopenta(1,2-b:5,4-b')dithiophene] with N-methylimidazole, a flexible electronic device, Al/PTT-NMI+Br-/ITO-coated PET (ITO: indium tin oxide; PET: polyethylene terephthalate), is successfully fabricated. This device shows a typical nonvolatile rewritable resistive random access memory (RRAM) effect at a sweep voltage range of ±3 V and a history-dependent memristive switching performance at a small sweep voltage range of ±1 V. Both the learning/memorizing functions and the synaptic potentiation/depression of biological systems have been emulated. The switching mechanism for the PTT-NMI+Br--based electronic device may be highly associated with ion migration under bias. Once water is added to this device, it will be destructed rapidly within 20 s due to the dissolution of the active layer. This device is not only a typical transient device but can also be used for constructing conventional memristors with long-term stability after electronic packaging. Furthermore, the soluble active layer in the device can be easily recycled from its aqueous solution and reused for fabricating new transient memristors. This work offers a train of new thoughts for designing and constructing a neuromorphic computing system that can be quickly destroyed with water in the near future.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiaxuan Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mohamed E El-Khouly
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
| | - Xiaosheng Cui
- Shanghai Institute of Space Propulsion, 801 Minhang Wanfang Road, Shanghai 201112, China
| | - Qiang Che
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|