1
|
Lv S, Guo F, Li K, Wang D, Gao H, Song C. The synergistic effect of Cl doping and Bi coupling to promote the carrier separation of BiOBr for efficient photocatalytic nitrogen reduction. J Colloid Interface Sci 2025; 677:831-841. [PMID: 39126801 DOI: 10.1016/j.jcis.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/01/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Photocatalytic nitrogen reduction reaction (NRR) is a sustainable process for ammonia synthesis under mild conditions. However, photocatalytic NRR activity and are generally limited by inefficient carrier separation and transfer. Therefore, parallel engineering of bulk phase doping and surface coupling is critical to achieving the goal of efficient NRR. In this study, Cl doped BiOBr nanosheet assemblies (BiOBr/Cl) were constructed in delicately designed deep eutectic solvents (DESs), combined with ionothermal methods at low temperatures and Bi3+ exsolution reduction strategy at high temperatures. The unique liquid state and reducibility of DESs induce the reduction of Bi3+ and the in situ coupling of Bi quantum dots at the surface of BiOBr/Cl nanosheets along with the construction of Bi-BiOBr/Cl nanosheet assemblies. The experimental results show that Cl doping could reduce the exciton dissociation energy and promote its dissociation to free carriers. Bi quantum dots could form tightly coupled Schottky junction with BiOBr/Cl enabling the efficient and unidirectional transmission of photogenerated electrons from BiOBr/Cl to metal Bi. The formed electron deficient region at Schottky interface promotes the adsorption and activation of N2. The hierarchical structure of Bi-BiOBr/Cl nanosheet assembly benefits to providing more N2 adsorption active sites. The DFT calculation shows that the accumulation of high concentration of active hydrogen in Bi-BiOBr/Cl leads to a significant decrease of energy barrier of the first step hydrogenation of N2. Bi-BiOBr/Clis more inclined to adsorb nitrogen for NRR in comparison with H* for hydrogen production. The synergistic effect of Cl doping and Bi coupling result in a high NRR activity of Bi-BiOBr/Cl photocatalyst of 6.67 mmol·g-1·h-1, which was 11.3 times higher than that of initial BiOBr. This study provides a promising strategy for designing highly active NRR photocatalysts with high efficiency carrier dissociation and transport.
Collapse
Affiliation(s)
- Shuhua Lv
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China
| | - Fengjuan Guo
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China
| | - Kaiding Li
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan 250200, PR China
| | - Debao Wang
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| | - Hongtao Gao
- College of Chemistry and Molecular Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| | - Caixia Song
- College of Materials Science and Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| |
Collapse
|
2
|
Cao XC, Zhang BC, Cui J, Suo C, Duan XC, Guo SH, Zhang XM. Photocatalyst Au@Ni-MOFs with Different Plasmonic Coverages for Improved Hydrogen Evolution from Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18695-18705. [PMID: 39172768 DOI: 10.1021/acs.langmuir.4c02335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Plasmonic materials are fundamental photosensitizer materials for photocatalytic reactions. Various structures, including core-shell types, satellite types, and distribution types, have been designed and prepared for the optimization of photocatalytic reactions. However, understanding the profound enhancement mechanism of various structures is still challenging. Thus, the plasmonic coverage is considered to be an index for analyzing the influence mechanism. Here, Au@Ni-MOF core-shell flower sphere-like photocatalysts are prepared, and the size of the flower sphere can be precisely regulated by varying the amount of Au. Thus, different plasmonic coverages are realized through the tuning of spheres of different sizes. The high plasmonic coverage of catalysts can enhance visible light absorption, facilitate the generation of photogenerated electron-hole pairs, and shorten the photogenerated carrier transport distance. Moreover, the exponential relationship between the photocatalytic hydrogen production performance and the plasmonic coverage can also be used as a guide for material design. As a result, a photocatalytic hydrogen production rate of 3389 μmol·g-1·h-1 is achieved in the Au@Ni-MOF sample with high plasmonic coverage, which will advance the plasmonic application in photocatalytic reactions.
Collapse
Affiliation(s)
- Xu Chuan Cao
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Bai Chao Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Jing Cui
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Chao Suo
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xiao Chuan Duan
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Shao Hui Guo
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| | - Xian-Ming Zhang
- Key Laboratory of Interface Science and Engineering in Advanced Material, Ministry of Education, College of Chemistry, College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, China
| |
Collapse
|
3
|
Bi Y, Xu K, Wang Y, Li X, Zhang X, Wang J, Zhang Y, Liu Q, Fang Q. Efficient metal-organic framework-based dual co-catalysts system assist CdS for hydrogen production from photolysis of water. J Colloid Interface Sci 2024; 661:501-511. [PMID: 38308890 DOI: 10.1016/j.jcis.2024.01.158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
Metal-organic framework materials (MOFs) and their derivatives have been widely used in the field of photocatalytic water decomposition for hydrogen production. In this study, NiS/CdS was initially acquired and subsequently combined with DUT-67 via ultrasound to create a unique ternary photocatalyst NiS/CdS@DUT-67. The rate of hydrogen production for NiS/CdS@DUT-67 is 9618 μmol·g NiS/CdS-1·h-1 for NiS/CdS@DUT-67, which is 32 times and 2.5 times higher than that for CdS and NiS/CdS, respectively. Of particular interest is the fact that even after 50 h of photocatalysis, the hydrogen production rate did not show a significant decrease, demonstrating its excellent stability compared to CdS and NiS/CdS. In this ternary system, NiS and DUT-67 function as dual co-catalysts for CdS, collaborating to enhance charge separation during the photocatalysis. This study presents a clear demonstration of the advantages of utilizing metal-organic framework derivatives (MOF-derivatives) cophotocatalysts and their synergistic effect, resulting in improved photocatalytic activity and stability of semiconductors. This innovative approach provides a new perspective on constructing photocatalytic materials with exceptional performance.
Collapse
Affiliation(s)
- Yiyang Bi
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Kun Xu
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Ying Wang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xin Li
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Xupeng Zhang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Jiabo Wang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China
| | - Yu Zhang
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Qun Liu
- School of Petrochemical Technology, Jilin Institute of Chemical Technology, Jilin 132022, China.
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
4
|
Araque LM, Fernández de Luis R, Fidalgo-Marijuan A, Infantes-Molina A, Rodríguez-Castellón E, Pérez CJ, Copello GJ, Lázaro-Martínez JM. Linear Polyethyleneimine-Based and Metal Organic Frameworks (DUT-67) Composite Hydrogels as Efficient Sorbents for the Removal of Methyl Orange, Copper Ions, and Penicillin V. Gels 2023; 9:909. [PMID: 37998999 PMCID: PMC10671452 DOI: 10.3390/gels9110909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
This research explores the integration of DUT-67 metal organic frameworks into polyethyleneimine-based hydrogels to assemble a composite system with enough mechanical strength, pore structure and chemical affinity to work as a sorbent for water remediation. By varying the solvent-to-modulator ratio in a water-based synthesis path, the particle size of DUT-67 was successfully modulated from 1 μm to 200 nm. Once DUT-67 particles were integrated into the polymeric hydrogel, the composite hydrogel exhibited enhanced mechanical properties after the incorporation of the MOF filler. XPS, NMR, TGA, FTIR, and FT Raman studies confirmed the presence and interaction of the DUT-67 particles with the polymeric chains within the hydrogel network. Adsorption studies of methyl orange, copper(II) ions, and penicillin V on the composite hydrogel revealed a rapid adsorption kinetics and monolayer adsorption according to the Langmuir's model. The composite hydrogel demonstrated higher adsorption capacities, as compared to the pristine hydrogel, showcasing a synergistic effect, with maximum adsorption capacities of 473 ± 21 mg L-1, 86 ± 6 mg L-1, and 127 ± 4 mg L-1, for methyl orange, copper(II) ions, and penicillin V, respectively. This study highlights the potential of MOF-based composite hydrogels as efficient adsorbents for environmental pollutants and pharmaceuticals.
Collapse
Affiliation(s)
- Luis M. Araque
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.M.A.); (G.J.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), Buenos Aires 1113, Argentina
| | - Roberto Fernández de Luis
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (R.F.d.L.); (A.F.-M.)
| | - Arkaitz Fidalgo-Marijuan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; (R.F.d.L.); (A.F.-M.)
- Departamento de Química Orgánica e Inorgánica, Facultad de Ciencia y Tecnología, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - Antonia Infantes-Molina
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29010 Malaga, Spain; (A.I.-M.); (E.R.-C.)
| | - Enrique Rodríguez-Castellón
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Universidad de Málaga, 29010 Malaga, Spain; (A.I.-M.); (E.R.-C.)
| | - Claudio J. Pérez
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones en Ciencia y Tecnología de Materiales (INTEMA), Facultad de Ingeniería, Universidad de Mar del Plata, Mar del Plata 7600, Argentina;
| | - Guillermo J. Copello
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.M.A.); (G.J.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), Buenos Aires 1113, Argentina
| | - Juan M. Lázaro-Martínez
- Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires 1113, Argentina; (L.M.A.); (G.J.C.)
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Química y Metabolismo del Fármaco (IQUIMEFA-UBA-CONICET), Buenos Aires 1113, Argentina
| |
Collapse
|
5
|
Le-Duy N, Hoang LAT, Nguyen TD, Lee T. Pd nanoparticles decorated BiVO 4 pine architectures for photocatalytic degradation of sulfamethoxazole. CHEMOSPHERE 2023; 321:138118. [PMID: 36775029 DOI: 10.1016/j.chemosphere.2023.138118] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/30/2023] [Accepted: 02/09/2023] [Indexed: 06/18/2023]
Abstract
Sulfamethoxazole (SMX) has been extensively detected in wastewater treatment plant effluents and surface water. Because of its potential risks to ecology and health, treatment for eliminating SMX is urgently required. In this study, we report the application of Pd nanoparticles decorated on BiVO4 pine architecture for the photocatalytic degradation of SMX. The results showed that the barer BiVO4 and Pd-BiVO4 eliminated SMX under visible-light irradiation. After 210 min of irradiation, 98.8% of SMX was substantially eliminated by Pd-BiVO4, whereas bare BiVO4 can degraded approximately 36.3% of SMX. Pd-BiVO4 also exhibited a high mineralization rate (84% of total organic carbon (TOC) removal) compared to bare BiVO4 (51% of TOC removal). Through three-dimensional excitation-emission matrix fluorescence spectra, SMX with high fluorescence intensity can be degraded to non-fluorescence intermediate products, further confirming the high mineralization of SMX over Pd-BiVO4 catalyst. Well-dispersed Pd nanoparticles on the {040} facet of BiVO4 pine architecture can support the recombination of photogenerated charge carriers because of the formation of the Schottky junction at the Pd-BiVO4 interface. Besides, the active species trapping tests indicated that •O2- and h+ radicals dominate SMX photodegradation over Pd-BiVO4. The main degradation intermediates of SMX in the reaction solution was also identified through ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry analysis. This investigation can provide insight into designing metallic/semiconductor junctions for antibiotic elimination in water media.
Collapse
Affiliation(s)
- Nhat Le-Duy
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Lan-Anh T Hoang
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
| | - Trinh Duy Nguyen
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea; Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, 700000, Viet Nam.
| | - Taeyoon Lee
- Department of Environmental Engineering, College of Environmental and Marine, Pukyong National University, 45Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea.
| |
Collapse
|
6
|
Yu S, Zhang C, Yang H. Two-Dimensional Metal Nanostructures: From Theoretical Understanding to Experiment. Chem Rev 2023; 123:3443-3492. [PMID: 36802540 DOI: 10.1021/acs.chemrev.2c00469] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
This paper reviews recent studies on the preparation of two-dimensional (2D) metal nanostructures, particularly nanosheets. As metal often exists in the high-symmetry crystal phase, such as face centered cubic structures, reducing the symmetry is often needed for the formation of low-dimensional nanostructures. Recent advances in characterization and theory allow for a deeper understanding of the formation of 2D nanostructures. This Review firstly describes the relevant theoretical framework to help the experimentalists understand chemical driving forces for the synthesis of 2D metal nanostructures, followed by examples on the shape control of different metals. Recent applications of 2D metal nanostructures, including catalysis, bioimaging, plasmonics, and sensing, are discussed. We end the Review with a summary and outlook of the challenges and opportunities in the design, synthesis, and application of 2D metal nanostructures.
Collapse
Affiliation(s)
- Siying Yu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Cheng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| | - Hong Yang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 206 Roger Adams Laboratory, 600 South Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
7
|
Zhao X, Xu M, Song X, Zhou W, Liu X, Huo P. 3D Fe-MOF embedded into 2D thin layer carbon nitride to construct 3D/2D S-scheme heterojunction for enhanced photoreduction of CO2. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(22)64115-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|