1
|
Song Y, Zhang M, Chen Z, Jian M, Ling C, Zhang Q. Sustainable Pb(II) Removal and Recovery from Wastewater Using a Bioinspired Metal-Phenolic Hybrid Membrane with Efficient Regeneration. CHEMSUSCHEM 2025; 18:e202401770. [PMID: 39635921 DOI: 10.1002/cssc.202401770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/16/2024] [Indexed: 12/07/2024]
Abstract
High-performance adsorbents often require efficient selectivity in wastewater, recoverability, and ease of multiple regeneration cycles, but achieving this remains a significant challenge. We report a new strategy for the efficient removal of lead (Pb(II)) from contaminated water streams using an innovative tannic acid (TA)-Fe(III)-based metal-phenolic network (MPN) hybrid membrane (MPN-PAM). This novel membrane exploits the tunable pH-sensitive coordination structure of the MPN to achieve selective removal and recovery of Pb(II) while enabling efficient membrane regeneration by filtration. This membrane demonstrates superior selectivity for Pb(II) with a removal efficiency of up to 98 % and an adsorption capacity of approximately 117.58 mg/g, even in the presence of high salinity, as well as coexisting heavy metals. The membrane maintains high Pb(II) removal efficiency over 20 consecutive cycles and 95 % efficiency over 10 regeneration cycles. Under continuous operation, it treats approximately 85 L per m2 of membrane, reducing Pb(II) concentrations to trace levels (~40 μg/L), meeting electroplating wastewater standard (GB21900-2008). Additionally, even low concentrations of Pb(II) (<5 mg/L) are efficiently purified to below WHO drinking water standard (10 μg/L). The operational cost for treating Pb(II)-contaminated wastewater is about $0.13 per ton, highlighting the cost-effectiveness and potential for large-scale application in wastewater treatment.
Collapse
Affiliation(s)
- Yaran Song
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Manyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Zichang Chen
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Meili Jian
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Chen Ling
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, P. R. China
| |
Collapse
|
2
|
Chen W, Liu Z, Xie Y, Guo X, Xie H, Chen J, Zhang Z, Ding L. Synthesis of ZIF-67 composite lignin hydrogel and its catalytic degradation of naphthalene by PMS in wastewater. Int J Biol Macromol 2025; 298:139700. [PMID: 39826725 DOI: 10.1016/j.ijbiomac.2025.139700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 01/05/2025] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The incorporation of ZIF-67 into hydrogels for wastewater pollutant remediation has been widely studied, but the synthesis often requires organic solvents such as methanol or ethanol, which can result in the generation of toxic liquid waste. In this study, a novel hydrogel (ZIF-67@SL) was synthesized by integrating ZIF-67 into a dual-network system of sodium lignosulfonate (SL) and acrylamide (AM) using an in situ precipitation method in water. The material was characterized by XRD, FTIR, XPS, SEM, TEM, BET, and TGA analyses. ZIF-67@SL was used to activate peroxymonosulfate (PMS) for degrading naphthalene (NAP) in aqueous solutions. Results showed that ZIF-67@SL effectively activated PMS, achieving an 85.43 % removal rate of NAP within 60 min at 30 °C, with an initial NAP concentration of 10 mg·L-1, ZIF-67@SL dosage of 800 mg·L-1, PMS concentration of 1000 mg·L-1, and pH 7.0. The catalytic efficiency remained high after five recycling cycles. Quenching experiments and EPR spectra revealed that the degradation of NAP in the ZIF-67@SL/PMS system occurred through both free radical pathways (SO4•-, •OH, and O2•-) and a non-radical pathway (1O2). XPS analysis indicated that the activation of PMS and generation of radicals were influenced by Co2+, Co3+, Co0, nitrogen elements, and adsorbed oxygen in the ZIF-67@SL composite. Furthermore, the ZIF-67@SL/PMS system demonstrated strong resistance to low-concentration anions and humic acid (HA) interference and effectively removed multiple polycyclic aromatic hydrocarbons (PAHs) in mixed wastewater. Maximum removal rates for NAP, ACN, ACT, PHE, and FLU were 95.26 %, 99.9 %, 99.79 %, 99.04 %, and 75.69 %, respectively. This study provides an environmentally friendly strategy for wastewater treatment by synthesizing ZIF-67 hydrogel in water and utilizing it as an efficient catalyst.
Collapse
Affiliation(s)
- Wu Chen
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; China National Petroleum Corporation HSE Key Laboratory (Yangtze University Research Laboratory), Jingzhou 434023, People's Republic of China
| | - Zhuozhuang Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, People's Republic of China.
| | - Yuansha Xie
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; China National Petroleum Corporation HSE Key Laboratory (Yangtze University Research Laboratory), Jingzhou 434023, People's Republic of China.
| | - Xianzhe Guo
- College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
| | - Huijia Xie
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; China National Petroleum Corporation HSE Key Laboratory (Yangtze University Research Laboratory), Jingzhou 434023, People's Republic of China
| | - Jianghao Chen
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; China National Petroleum Corporation HSE Key Laboratory (Yangtze University Research Laboratory), Jingzhou 434023, People's Republic of China
| | - Zheng Zhang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; China National Petroleum Corporation HSE Key Laboratory (Yangtze University Research Laboratory), Jingzhou 434023, People's Republic of China
| | - Ling Ding
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, People's Republic of China; China National Petroleum Corporation HSE Key Laboratory (Yangtze University Research Laboratory), Jingzhou 434023, People's Republic of China
| |
Collapse
|
3
|
Wang S, Geng X, Zhao Z, Zhang M, Song Y, Sun K, Zhang Q. Ammoniated-driven green synthesis of charged polyoxometalate supported ionic liquids for exceptional heavy metal remediation in actual industrial wastewater. WATER RESEARCH 2025; 272:122939. [PMID: 39671870 DOI: 10.1016/j.watres.2024.122939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/16/2024] [Accepted: 12/08/2024] [Indexed: 12/15/2024]
Abstract
Reducing toxic metal concentrations to extremely low levels has long posed a challenge. Polyoxometalate supported ionic liquids (POM-SILs) offer significant potential for advanced water remediation, but their application is limited by complex preparation, toxic solvents, and poor stability due to leaching, compromising sustainability. We introduced a sustainable approach for selectively removing Pb(II) in complex electroplating wastewater using charged POM-SILs composite, synthesized by directly grafting lacunary Keggin ions ([α-SiW11O39]8-, SiW11) onto charged ammoniated polystyrene via a straightforward, solvent-free process. These POM-SILs featured monodisperse nanoclusters (<5 nm) in a cross-linked polymer matrix, ensuring optimal site accessibility and enhanced stability with negligible leaching. They achieved exceptional Pb(II) selectivity, boasting a distribution coefficient (Kd) of 23,605 mL g-1-over 120 times greater than conventional ion-exchange resins-and a Pb(II) removal efficiency exceeding 97.6%, even in high-salinity, diverse heavy metal environments. They reached a large Q0.01 value of 0.371 mg g-1, effectively treating up to 2,200 liters of wastewater per kg composite, reducing Pb(II) concentrations to below 0.01 mg L-1, meeting drinking water standards. This method marks a substantial advancement in heavy metal remediation, offering an efficient and sustainable solution for industrial wastewater treatment.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China
| | - Xilin Geng
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China
| | - Ziyi Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China
| | - Manyu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China
| | - Yaran Song
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China
| | - Keju Sun
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-remediation in Water and Resource Reuse, Yanshan University Qinhuangdao 066004, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
4
|
Song Y, Liu Z, Zhang Q. Engineering the future: Unveiling novel paths in heavy metal wastewater remediation with advanced carbon-based nanomaterials - Beyond performance comparison, tackling challenges, and exploring opportunities. CHEMOSPHERE 2024; 366:143477. [PMID: 39374670 DOI: 10.1016/j.chemosphere.2024.143477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/30/2024] [Accepted: 10/03/2024] [Indexed: 10/09/2024]
Abstract
This review addresses the pressing issue of heavy metal pollution in water, specifically focusing on the application of adsorption technology utilizing carbon materials such as biochar, carbon nanotubes, graphene, and carbon quantum dots. Utilizing bibliometric analysis with VOSviewer based on Web of Science core dataset, this study identifies research hotspots related to carbon-based materials in heavy metal applications over the past decade. However, existing literature still lacks sufficient comparative analysis of the potential of carbon-based materials' structural characteristics and inherent advantages in heavy metal applications. This review strategically addresses this gap, offering a comprehensive comparative analysis of these four materials from an engineering application perspective. It offers a thorough evaluation of their suitability for various water treatment applications, providing a detailed examination of their advantages and limitations in heavy metal application. Additionally, the review provides insights into performance comparisons, addresses challenges, and explores emerging opportunities in this field. Insights into potential application fields based on structural characteristics and inherent advantages are presented. This unique focus on a comprehensive comparative analysis distinguishes the article, offering a nuanced perspective on the strengths and future possibilities of carbon materials in tackling the global challenge of heavy metal pollution in water.
Collapse
Affiliation(s)
- Yaran Song
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Zhanqi Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao, 066004, China; Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
5
|
Song Y, Jian M, Qiao L, Zhao Z, Yang Y, Jiao T, Zhang Q. Efficient Removal and Recovery of Ag from Wastewater Using Charged Polystyrene-Polydopamine Nanocoatings and Their Sustainable Catalytic Application in 4-Nitrophenol Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5834-5846. [PMID: 38261542 DOI: 10.1021/acsami.3c16414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
This study addresses the long-standing challenges of removing and recovering trace silver (Ag) ions from wastewater while promoting their sustainable catalysis utilization. We innovatively developed a composite material by combining charged sulfonated polystyrene (PS) with a PDA coating. This composite serves a dual purpose: effectively removing and recovering trace Ag+ from wastewater and enabling reused Ag for sustainable applications, particularly in the catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP). The PS-PDA demonstrated exceptional selectivity to trace Ag+ recycling, which is equal to 14 times greater than the commercial ion exchanger. We emphasize the distinct roles of different charged functional groups in Ag+ removal and catalytic reduction performance. The negatively charged SO3H groups exhibited the remarkable ability to rapidly enrich trace Ag ions from wastewater, with a capacity 2-3 times higher than that of positively-N+(CH3)3Cl and netural-CH2Cl-modified composites; this resulted in an impressive 96% conversion of 4-NP to 4-AP within just 25 min. The fixed-bed application further confirmed the effective treatment capacity of approximately 4400 L of water per kilogram of adsorbent, while maintaining an extremely low effluent Ag+ concentration of less than 0.1 mg/L. XPS investigations provided valuable insights into the conversion of Ag+ ions into metallic Ag through the enticement of negatively charged SO3H groups and the in situ reduction facilitated by PDA. This breakthrough not only facilitates the efficient extraction of Ag from wastewater but also paves the way for its environmentally responsible utilization in catalytic reactions.
Collapse
Affiliation(s)
- Yaran Song
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
| | - Meili Jian
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
| | - Lili Qiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
| | - Ziyi Zhao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
| | - Yujia Yang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
| | - Qingrui Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Yanshan University, Qinhuangdao 066004, China
- Hebei Province Engineering Research Center for Harmless Synergistic Treatment and Recycling of Municipal Solid Waste, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
6
|
Ma C, Cheng Z, Zhang M, Huang Y, Huang W, Wang L, Zhao B, Zhang Z. High performance forward osmosis membrane with ultrathin hydrophobic nanofibrous interlayer. CHEMOSPHERE 2023; 338:139556. [PMID: 37467861 DOI: 10.1016/j.chemosphere.2023.139556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/29/2023] [Accepted: 07/16/2023] [Indexed: 07/21/2023]
Abstract
The novel thin film composite (TFC) forward osmosis (FO) membrane with electrospinning nanofibers as support layer can alleviate internal concentration polarization (ICP). While the macropores of the nanofiber support layer cause defects in the polyamide (PA) layer. Therefore, hydrophobic polyvinylidene fluoride (PVDF) fine nanofibers were used as an interlayer to modulate the process of interfacial polymerization (IP) in this study. The results showed that the introduction of the interlayer improved the hydrophobicity of the support layer for achieving uniform, thin and defect-free selective polyamide (PA) layer. The water flux of TFC-PVDF was 58.26 LMH in the FO mode of 2 M NaCl, which was two times higher than that of the unmodified FO membrane. Lower reverse salt flux (4.91 gMH) and structural parameter (179.43 μm) alleviated the ICP. In addition, TFC-PVDF membrane showed good anti-fouling performance for SA (flux recovery ratio of 93.97%) due to high hydrophilicity, low zeta potential and low roughness. This study provides an easy and promising method to prepare defect-free PA selective layer on the macropores nanofiber support layer. The novel FO membrane shows high desalination performance and anti-fouling properties.
Collapse
Affiliation(s)
- Cong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Tianjin Haiyuanhui Technology Co., Ltd., Tianjin, 300457, China
| | - Zhaoyang Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Meng Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Yukun Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Weili Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Liang Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China; Cangzhou Institute of Tiangong University, Cangzhou, 061000, China.
| | - Bin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhaohui Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Environmental Science and Engineering, Tiangong University, Tianjin, 300387, China
| |
Collapse
|
7
|
Zhang Z, Ma Y, Li A, Pan Y, Yao Q, Jia X, Zhou Q. Improved fractionation method using amphipathic NDAM for the efficient separation of disinfection by-product precursors in natural organic matter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:38174-38184. [PMID: 36576624 DOI: 10.1007/s11356-022-24549-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
The hydrophilic substances in natural organic matter (NOM) are the main precursor of disinfection by-products (DBPs) formed during disinfection processes. The fractionation of the components in NOM based on hydrophilicity contributes to elaborating the behavior of NOM during disinfection. However, the traditional NOM fractionation method using two hydrophobic resins of DAX-8 and XAD-4 lays emphasis on the separation of hydrophobic substances, limiting the thorough study of the hydrophilic components in NOM. In this work, the amphiphilic resin NDAM was employed as a replacement of XAD-4 to realize more thorough separation of the hydrophilic substances. Compared with the divinylbenzene (DVB) structure of XAD-4, the NDAM possesses a more hydrophilic skeleton of N-vinylpyrrolidone (NVP) and DVB which favors the adsorption of hydrophilic components in NOM. The two fractionation methods of DAX-8 + XAD-4 and DAX-8 + NDAM were applied to fractionate NOM, and the obtained fractions were characterized via fluorescence spectra, UV spectra, acid-base titration, the partition coefficients of aqueous two-phase systems(ATPs), and 1H nuclear magnetic resonance (1H-NMR). The results showed that the transphilic fractions separated by XAD-4 accounted for 11.09% of NOM, while the proportion increased to 20.33% with the method of NDAM fractionation. Besides, the hydrophilic components enriched by NDAM not only have more π-conjugated systems and more aromatic structure but also contain more oxygen-containing and nitrogen-containing functional groups. In addition, the hydrophilic fractions separated by NDAM contained more DBP precursors. The NDAM separates more NOM which can produce bromine-containing DBPs into HPIA, and the DBP productivity of HPIN is significantly higher than that of XAD-4. In general, the NOM fractionation method proposed in this study utilizing NDAM resin could fractionate the hydrophilic fractions in NOM more thoroughly, showing application potential in the analysis and control of DBPs formed from NOM.
Collapse
Affiliation(s)
- Ziang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China
| | - Yan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China
| | - Aimin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China
| | - Yang Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China
| | - Qianqian Yao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China
| | - Xiaorui Jia
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 163 Xianlin Avenue, 210023, Nanjing, China.
| |
Collapse
|
8
|
Zuo Q, Zheng H, Zhang P, Zhang Y, Zhang J, Zhang B. Facile green preparation of single- and two-component modified activated carbon fibers for efficient trace heavy metals removal from drinking water. CHEMOSPHERE 2023; 316:137799. [PMID: 36634718 DOI: 10.1016/j.chemosphere.2023.137799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/07/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Trace heavy metals exist in drinking water, having great adverse effects on human health and making it a huge challenge to remove. Herein, novel materials have been prepared by a simple and green method using single- (polydopamine (PDA) or 2,3-dimercaptopropanesulfonic sodium (DMPS)) (PDA-OACF or DMPS-OACF) and two-component (PDA and DMPS) (DMPS-PDA-OACF) functionalized activated carbon fibers pretreated by hydrogen peroxide for the removal of trace heavy metals. The as-prepared DMPS-OACF (7.5,20) under DMPS addition of 7.5 mg and sonication time of 20 min retained large specific surface area, micro-mesoporous structure and rich functional groups and showed better adsorption performance for trace lead and mercury. It also exhibited wide applicable ranges of pH (3.50-10.50) and concentration (50-1136 μg L-1), rapid adsorption kinetics, and excellently selective removal performance for trace lead. The maximum lead adsorption capacity reached 16.03 mg g-1 when the effluent lead concentration met World Health Organization (WHO) standard and the adsorbent can be regenerated by EDTA solution. The fitting results of adsorption kinetics and isotherm models revealed that the lead adsorption process was multi-site adsorption on heterogeneous surfaces and chemical adsorption. The excellent adsorption properties for trace heavy metals were attributed that the sulfur/oxygen/nitrogen-containing functional groups boosted diffusion and adsorption by electrostatic attraction and coordination, suggesting that DMPS-OACF (7.5,20) has great application potential in the removal of trace heavy metals.
Collapse
Affiliation(s)
- Qi Zuo
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong Zheng
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China.
| | - Pengyi Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yu Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiejing Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Baichao Zhang
- Engineering Research Center of Ministry of Education for Geological Carbon Storage and Low Carbon Utilization of Resources, Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
9
|
Zhao Z, Li Z, Wu L, Song Y, Roger Razanajatovo M, Sun Q, Jiao T, Peng Q, Zhang Q. Rational design of the Nanocomposite by in-situ sub-10 nm La(OH)3 formation for Selective phosphorus removal in waters. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
10
|
Wang C, Kong L, Wang Y, Cui X, Li N, Yan B, Chen G. New insight into the synergy of nitrogen-related sites on biochar surface for sulfamethoxazole adsorption from water. CHINESE CHEM LETT 2023. [DOI: 10.1016/j.cclet.2023.108159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
11
|
Yao L, Hao M, Zhao F, Wang Y, Zhou Y, Liu Z, An X, Gao Z, Wang J, Zheng T, Chen P, Zhang L. Fabrication of silk sericin-anthocyanin nanocoating for chelating and saturation-visualization detection of metal ions. NANOSCALE 2022; 14:17277-17289. [PMID: 36377319 DOI: 10.1039/d2nr04047f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Silk sericin (SS) is a natural water-soluble protein with the potential to chelate metal ions via its polar groups. However, the difficulty of identifying the saturation of SS limits its application as filter films. One solution is to construct SS filter films with an indicator to reflect the degree of saturation of silk sericin. Hence, the nanocoating consisting of co-assembled SS protein and anthocyanin (C3G) nanoparticles is designed, constructed, and characterized to chelate metal ions with a saturation-visualization detection behavior. Here, metal ions Zn2+ and Al3+ are chosen as models to explore the chelating ability of SS and indicator behaviors of C3G, which could indicate the saturation degree of SS. Interestingly, after the saturation of SS in the solution and filter film situations, the visible color progressively shifts from pink to blue (Zn2+) or violet (Al3+), with the corresponding redshift of UV-Vis absorbance of C3G. Remarkable removal effectiveness of Zn2+ and Al3+, namely 93.16% and 53.97%, as well as an evident saturation-visualization detection, were identified by filter paper films with the nanocoating. Our research provides a fresh viewpoint for designing SS filter films that could effectively remove metal ions while enabling real-time viewing.
Collapse
Affiliation(s)
- Liang Yao
- School of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Minglu Hao
- School of Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Feng Zhao
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Yilin Wang
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang 310029, China
| | - Yueru Zhou
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Zhongyi Liu
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Xiaofan An
- School of Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Zhongfeng Gao
- School of Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
| | - Jun Wang
- School of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Tao Zheng
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Pu Chen
- School of Advanced Materials Institute, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250014, China
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| | - Lei Zhang
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada.
| |
Collapse
|
12
|
Effect of dissolved silicate on the degradation of sulfamethoxazole by nZVI@D201 nanocomposite. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Wang S, Wang H, Wang S, Fu L, Zhang L. Novel magnetic covalent organic framework for the selective and effective removal of hazardous metal Pb(II) from solution: Synthesis and adsorption characteristics. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Wei Y, Yuan P, Liu D, Liu M, Losic D, Ma X, Jiang R, Wu N, Yang F, Zhang J. Converting Chrysotile Nanotubes into Magnesium Oxide and Hydroxide Using Lanthanum Oxycarbonate Hybridization and Alkaline Treatment for Efficient Phosphate Adsorption. Inorg Chem 2022; 61:14684-14694. [PMID: 36050289 DOI: 10.1021/acs.inorgchem.2c02052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnesium oxide and hydroxide nanomaterials comprise a class of promising advanced functional metal nanomaterials whose use in environmental and material applications is increasing. Several strategies to synthesize these nanomaterials have been described but are unsustainable and uneconomic. This work reports on a processing strategy that turns natural magnesium-rich chrysotile into magnesium oxide and hydroxide nanoparticles via nanoparticle hybridization and an alkaline process while enabling La-based nanoparticles to coat the chrysotile nanotube surfaces. The adsorbent's resulting hybrid nanostructure had an outstanding capacity for phosphate uptake (135.2 mg P g-1) and enhanced regeneration performance. Furthermore, the adsorbent featured wide applicability with respect to the coexistence of competitive anions and a broad range of pH conditions, and its high-performance phosphate removal from sewage effluent was also demonstrated. Spectroscopic and microscopic analyses revealed the scavenging ability of phosphate by the La-based and Mg-based nanoparticles and the multiple capture mechanisms involved, including surface complexation and ion exchange. This proposed approach expands chrysotile's potential use as a magnesium-rich nanomaterial and harbors great promise for the removal of pollutants in a variety of real-world settings.
Collapse
Affiliation(s)
- Yanfu Wei
- National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Taipa, Macao 999078, China
| | - Peng Yuan
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Dong Liu
- CAS Key Laboratory of Mineralogy and Metallogeny/Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, CAS Center for Excellence in Deep Earth Science, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Mingxian Liu
- Department of Materials Science and Engineering, Jinan University, Guangzhou 510632, China
| | - Dusan Losic
- School of Chemical Engineering, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaomin Ma
- Morlion (Zhuhai) New Material & Technology Co., Ltd., Zhuhai 519031, China
| | - Ran Jiang
- The Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510640, China
| | - Nanchun Wu
- Morlion (Zhuhai) New Material & Technology Co., Ltd., Zhuhai 519031, China
| | - Fang Yang
- The Pearl River Hydraulic Research Institute, Pearl River Water Resources Commission of the Ministry of Water Resources, Guangzhou 510640, China
| | - Junxiong Zhang
- Morlion (Zhuhai) New Material & Technology Co., Ltd., Zhuhai 519031, China
| |
Collapse
|
15
|
Fang Z, Wang H, Zhang K, Cheng S, Zhang X. Enhanced removal of nickel(II) from water by utilizing gel-type nanocomposite containing sub-5 nm hydrated manganese(IV) oxides. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Tian Q, Lin Z, Qiu F, Li Z, Guo Q, Zhang T. Recyclable structured toxic industrial nickel-containing sludge for efficient anionic contaminant adsorption. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:64259-64265. [PMID: 35962892 DOI: 10.1007/s11356-022-22523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/09/2022] [Indexed: 06/15/2023]
Abstract
Safe, efficient, and simultaneous treatment of toxic industrial sludge and anionic contaminant crisis in one route still remains a persistent global challenge. Herein, we proposed a facile waste-control-waste conceptual design strategy to develop low-cost and high-performance sludge-based adsorbent for not only recycling of toxic waste nickel-containing sludge (NCS) but for the efficient removal of anionic contaminants in wastewater. The as-designed Ni-Al layered double oxides/calcined NCS (Ni-Al LDOs/CNCS) (216.96 m2/g, 0.44 cm3/g) with hierarchical porous structure possessed a larger specific surface area and well-developed porosity compared with raw NCS (60.52 m2/g, 0.26 cm3/g). It was proved that a higher hydrothermal temperature (180 °C) and a longer hydrothermal time (24 h) both promote the in situ assembly of LDHs nanosheets on CNCS surface. Significantly, the sludge-based adsorbent displayed high adsorption capacity towards five representative anions including F- (~ 31.1 mg/g), SO42- (~ 37.7 mg/g), NO3- (~ 21.8 mg/g), Cl- (~ 28.0 mg/g), and H2PO4- (~ 35.8 mg/g). Furthermore, the adsorbent maintained desirable adsorption capacity even after 6 adsorption/desorption cycles. Therefore, this study could be potentially extended toward design of other industrial waste sludge-derived high value-added advanced materials and for wastewater treatment applications.
Collapse
Affiliation(s)
- Qiong Tian
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhipeng Lin
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Zhangdi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qing Guo
- Zhenjiang Environmental Monitoring Center, Zhenjiang, 212004, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|