1
|
Jing S, Xu Q, Wang H, Kannan P, Liang H, Brouzgou A, Wang R, Tsiakaras P. Improved photocatalytic production of hydrogen peroxide over graphitic carbon nitride doped with potassium salts. J Colloid Interface Sci 2025; 695:137675. [PMID: 40394781 DOI: 10.1016/j.jcis.2025.137675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 05/22/2025]
Abstract
Hydrogen peroxide (H2O2) has long been recognized as an important green cleaning chemical. Due to its narrow bandgap and nitrogen-rich structure, graphitic carbon nitride (g-C3N5) is considered a promising photocatalyst for H2O2 generation. However, the limited visible light harvesting capacity and weak charge separation ability of bulk g-C3N5 limit its photocatalytic activity. Herein, to address the low photogenerated carrier mobility of g-C3N5, we successfully synthesized a series of K-ion-doped g-C3N5 (KCN) by co-calcination of 3-amino-1,2,4-triazole with potassium salt. The effects of different potassium salts (potassium oxalate-K2C2O4, potassium nitrate-KNO3, and potassium hydroxide-KOH) and different additions on the photocatalytic ability of g-C3N5 were compared and systematically analyzed. The results showed that the KCN sample synthesized with KOH as dopant exhibits the highest H2O2 yield up to 1546.7 µmol L-1h-1, seven times more than that of pure g-C3N5. The excellent photocatalytic H2O2 evolution efficiency is confirmed by DFT calculations to be mainly attributed to the rational design of g-C3N5, which produces more pronounced cyano groups under high-temperature calcination and alkaline environment while promoting the formation of N vacancies. This design effectively promotes the separation of electron-hole pairs and the optimization of carrier transport capacity, and as a result, KOH doping exhibits better photocatalytic performance. The current work provides a more favorable modification strategy for future solar energy conversion.
Collapse
Affiliation(s)
- Shengyu Jing
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38334, Greece
| | - Qingyuan Xu
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Haoran Wang
- School of Information and Control Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Huagen Liang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China; Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38334, Greece.
| | - Angeliki Brouzgou
- Department of Energy Systems, Faculty of Technology, University of Thessaly, Geopolis 41500 Larisa, Greece
| | - Ruiyu Wang
- Jiangsu Key Laboratory of Coal-based Greenhouse Gas Control and Utilization, Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China.
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, School of Engineering, University of Thessaly, Pedion Areos 38334, Greece.
| |
Collapse
|
2
|
Wang X, Su N, Wang X, Cao D, Xu C, Wang X, Yan Q, Lu C, Zhao H. Fabrication of 0D/1D S-scheme CoO-CuBi 2O 4 heterojunction for efficient photocatalytic degradation of tetracycline by activating peroxydisulfate and product risk assessment. J Colloid Interface Sci 2024; 661:943-956. [PMID: 38330666 DOI: 10.1016/j.jcis.2024.01.209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/16/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
The step-scheme (S-scheme) heterojunction has excellent redox capability, effectively degrading organic pollutants in wastewater. Combining S-scheme heterojunction with activated persulfate advanced oxidation process reasonably can further enhance the degradation of Emerging Contaminants. Herein, a novel zero-dimensional/one-dimensional (0D/1D) CoO-CuBi2O4 (CoO-CBO) photocatalyst with S-scheme heterojunction was designed by hydrothermal and solvothermal methods. The band structure and electron and hole transfer pathway of CoO-CBO were analyzed using the ex-situ and in-situ X-ray photoelectron spectroscopy (XPS), Ultraviolet and Visible Spectrophotometer (UV-Vis) and optical radiation Kelvin probe force microscope (KPFM), and the formation of S-scheme heterojunction was demonstrated. The photocatalytic activity of ·S-scheme CoO-CBO heterojunction was carried out by degrading tetracycline (TC) with activating potassium monopersulfate triple salt under visible light. Compared with pure CuBi2O4 and pure CoO, 30%CoO/CuBi2O4 catalyst exhibited the highest TC degradation performance after activating persulfate, degrading 89.5% of TC within 90 min. On the one hand, the S-scheme heterojunction formed between CoO and CBO had a high redox potential. On the other hand, the activation of persulfate by Co and Cu could accelerate redox cycles and facilitate the generation of active radicals such as SO4-, O2- and OH, promoting the separation of the photogenerated e- and h+ in the composite, enhancing the peroxydisulfate (PDS) activation performance and improving the degradation effect of TC. Then, a gradual decrease in the toxicity of the intermediates in the TC degradation process was detected by ECOCER. In all, this study provided an S-scheme CoO/CuBi2O4 heterojunction that can activate PDS to degrade TC efficiently, which provided a new idea for the study of novel pollutant degradation and environmental toxicology.
Collapse
Affiliation(s)
- Xueying Wang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China
| | - Ni Su
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China
| | - Xinyu Wang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China
| | - Delu Cao
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China
| | - Chunlan Xu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China
| | - Xu Wang
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China
| | - Qiaozhi Yan
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China
| | - Changyu Lu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization & Development of Water Recourse, Hebei Center for Ecological and Environmental Geology Research, Hebei Geo University, Shijiazhuang 050031, China.
| | - Huimin Zhao
- College of Chemistry and Chemical Engineering, Heze University, Heze 274015, China.
| |
Collapse
|
3
|
Feng C, Zhang L. Microdroplet assisted hollow ZnCdS@PDA nanocages' synergistic confinement effect for promoting photocatalytic H 2O 2 production. MATERIALS HORIZONS 2024; 11:1515-1527. [PMID: 38240069 DOI: 10.1039/d3mh01915b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Solar-driven photocatalytic H2O2 production is greatly impeded by the slow mass transfer and rapid recombination of photogenerated charge carriers for multiphase reactions. Polydopamine (PDA)-coated hollow ZnCdS (ZnCdS@PDA) octahedral cages with sulfur vacancies were constructed as micro-reactors to provide a delimited micro-environment for highly efficient paired H2O2 production through water oxidation coupled with oxygen reduction. At neutral pH, hollow ZnCdS@PDA cages exhibited a high H2O2 production yield of 45.5 mM g-1 h-1 without the assistance of sacrificial agents in bulk solution, which can be attributed to the distinguished space constraint in hollow nanocages and a surprisingly adjusted band structure. Compared to the bulk water system, H2O and O2 inside the hollow nanocage can form an ideal system for boosting such nanoconfined H2O or O2 molecules' adsorption/enrichment on the interior of the ZnCdS active sites. More importantly, the photocatalytic yield of H2O2 generation (H2O2 concentrations of 190-65.6 mM g-1 h-1) obtained in the abundant gas-liquid interface of microdroplets is dramatically higher than that obtained in an aqueous bulk environment under visible light conditions without using sacrificial agents. This enhancement can be attributed to the synergistic effect of the hollow ZnCdS@PDA nanocage reactor and the microdroplet confinement photocatalysis reaction. Particularly, the improved/confined enhancement of O2 availability and enhanced charge separation, along with high catalytic durability are the main reasons leading to significant H2O2 production due to an ultrahigh interfacial electric field and an extremely large specific surface area in microdroplets. In addition to producing a highly concentrated liquid of hydrogen peroxide during the microdroplet photoreaction, we also obtained white solid hydrogen peroxide powder with strong oxidizing properties reducing costs and increasing safety in storage and transportation. This study highlights that nano-liquid catalysis (using microdroplets) provides a very efficient pathway for accelerating semiconductor photocatalysis limited by gas diffusion in a liquid.
Collapse
Affiliation(s)
- Chenxi Feng
- Lei Zhang, College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, P. R. China.
| | - Lei Zhang
- Lei Zhang, College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang 110036, P. R. China.
| |
Collapse
|
4
|
Chen W, Zhang WJ, Wang K, Chang L, Yan RQ, Xiong X, Huang GB, Han DM. Oxygen Vacancy-Mediated CuWO 4/CuBi 2O 4 Samples with Efficient Charge Transfer for Enhanced Catalytic Activity toward Photodegradation of Pharmacologically Active Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 38018894 DOI: 10.1021/acs.langmuir.3c02408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Photocatalytic degradation is a promising method for controlling the increasing contamination of the water environment due to pharmacologically active compounds (PHACs). Herein, oxygen vacancy (OV)-modulated Z-scheme CuWO4/CuBi2O4 hybrid systems were fabricated via thermal treatment by loading of CuWO4 nanoparticles with OVs on CuBi2O4 surfaces. The synthesized CuWO4/CuBi2O4 hybrid samples exhibited an enhanced photodegradation ability to remove PHACs under visible-light irradiation. More importantly, an optimized sample (10 wt % CuWO4/CuBi2O4) exhibited superior catalytic activity and excellent recycling stability for PHAC photodegradation. In addition, possible degradation paths for PHAC removal over the CuWO4/CuBi2O4 hybrid systems were proposed. The enhanced photocatalytic performance could be attributed to the efficient separation and transfer of photoformed charge pairs via the Z-scheme mechanism. This Z-scheme mechanism was systematically analyzed using trapping experiments of active species, ultraviolet photoelectron spectroscopy, electron spin resonance, and the photodepositions of noble metals. The findings of this study can pave the way for developing highly efficient Z-scheme photocatalytic systems for PHAC photodegradation.
Collapse
Affiliation(s)
- Wei Chen
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Wen-Jie Zhang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Kai Wang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Ling Chang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Rui-Qiang Yan
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Xianqiang Xiong
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - Guo-Bo Huang
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| | - De-Man Han
- School of Pharmaceutical and Chemical Engineering, Taizhou University, Jiaojiang 318000, Zhejiang, P. R. China
| |
Collapse
|
5
|
Mugo SM, Lu W, Robertson S. Anthraquinone-Polyaniline-Integrated Textile Platforms for In Situ Electrochemical Production of Hydrogen Peroxide for Microbial Deactivation. Polymers (Basel) 2023; 15:2859. [PMID: 37447504 PMCID: PMC10361206 DOI: 10.3390/polym15132859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrogen peroxide (H2O2) is a versatile and effective disinfectant against common pathogenic bacteria such as Escherichia coli (E. coli). Electrochemical H2O2 generation has been studied in the past, but a lack of studies exists on miniaturized electrochemical platforms for the on-demand synthesis of H2O2 for antibacterial applications. In this article, a chemically modified cotton textile platform capable of in situ H2O2 production is demonstrated for E. coli deactivation. The cotton textile was modified by layer-by-layer coating with conductive carbon nanotubes/cellulose nanocrystals (CNT/CNC) and a polymer of polyaniline (PANI) decorated with anthraquinone (AQ), designated as the AQ@PANI@CNT/CNC@textile antibacterial patch. The AQ@PANI@CNT/CNC@textile antibacterial textile patch H2O2 production capabilities were evaluated using both electrochemical and colorimetric methods. The AQ@PANI@CNT/CNC@textile antibacterial patch electrochemically produced H2O2 concentrations up to 209 ± 25 µM over a 40 min period and displayed a log reduction of 3.32 for E. coli over a period of 2 h. The AQ@PANI@CNT/CNC@textile antibacterial patch offers promise for use as a self-disinfecting pathogen control platform.
Collapse
Affiliation(s)
- Samuel M Mugo
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB T5J 4S2, Canada
| | - Weihao Lu
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB T5J 4S2, Canada
| | - Scott Robertson
- Physical Sciences Department, MacEwan University, 10700-104 Avenue, Edmonton, AB T5J 4S2, Canada
| |
Collapse
|
6
|
Xu Y, Liao J, Zhang L, Sun Z, Ge C. Dual sulfur defect engineering of Z-scheme heterojunction on Ag-CdS 1-x@ZnIn 2S 4-x hollow core-shell for ultra-efficient selective photocatalytic H 2O 2 production. J Colloid Interface Sci 2023; 647:446-455. [PMID: 37271089 DOI: 10.1016/j.jcis.2023.05.140] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/04/2023] [Accepted: 05/20/2023] [Indexed: 06/06/2023]
Abstract
Photocatalytic production of hydrogen peroxide (H2O2) using sunlight as an energy source, water and molecular oxygen as feedstock is considered as a green and sustainable promising strategy to solve the energy and environmental crisis. Despite significant improvements in photocatalyst design tuning, however, the relatively low photocatalytic H2O2 productivity is still far from satisfactory. Herein, we developed a multi-metal composite sulfide (Ag-CdS1-x@ZnIn2S4-x) with double S vacancies and hollow core-shell Z-type heterojunction structure for H2O2 generation by a simple hydrothermal method. The unique hollow structure improves the utilization of light source. The existence of Z-type heterojunction promotes the spatial separation of carriers, and the core-shell structure increases the interface area and active sites. Under visible light irradiation, Ag-CdS1-x@ZnIn2S4-x had a high hydrogen peroxide yield of 1183.7 μmol h-1 g-1, which was 6 times that of CdS. The electron transfer number (n = 1.53) obtained from the Koutecky-Levuch plot and DFT calculation confirm that the presence of dual disulfide vacancies provides good selectivity of 2e- O2 reduction to H2O2. This work provides new insights into the regulation of highly selective two-electron photocatalytic H2O2 production, and also provides new ideas for the design and development of highly active energy conversion photocatalysts.
Collapse
Affiliation(s)
- Yandong Xu
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Jianjun Liao
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China.
| | - Linlin Zhang
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Zihan Sun
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Chengjun Ge
- Key Laboratory of Agro-Forestry Environmental Processes and Ecological Regulation of Hainan Province, School of Ecology and Environment, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Protonated g-C 3N 4 coated Co 9S 8 heterojunction for photocatalytic H 2O 2 production. J Colloid Interface Sci 2022; 627:541-553. [PMID: 35870406 DOI: 10.1016/j.jcis.2022.07.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Photocatalytic H2O2 production is an eco-friendly technique because only H2O, molecular O2 and light are involved. However, it still confronts the challenges of the unsatisfactory productivity of H2O2 and the dependence on organic electron donors or high purity O2, which restrict the practical application. Herein, we construct a type-II heterojunction of the protonated g-C3N4 coated Co9S8 semiconductor for photocatalytic H2O2 production. The ultrathin g-C3N4 uniformly spreads on the surface of the dispersed Co9S8 nanosheets by a two-step method of protonation and dip-coating, and exhibits improved photogenerated electrons transportability and e--h+ pairs separation ability. The photocatalytic system can achieve a considerable productivity of H2O2 to 2.17 mM for 5 h in alkaline medium in the absence of the organic electron donors and pure O2. The optimal photocatalyst also obtains the highest apparent quantum yield (AQY) of 18.10% under 450 nm of light irradiation, as well as a good reusability. The contribution of the type-II heterojunction is that the migrations of electrons and holes within the interface between g-C3N4 and Co9S8 matrix promote the separation of photocarriers, and another channel is also opened for H2O2 generation. The accumulated electrons in conduction band (CB) of Co9S8 contribute to the major channel of two-electron reduction of O2 for H2O2 production. Meanwhile, the electrons in CB of g-C3N4 participate in the single electron reduction of O2 as an auxiliary channel to enhance the H2O2 production.
Collapse
|