1
|
Tan AYS, Cheng F, Zhang M, Tan MTT, Manickam S, Muthoosamy K. Graphitic carbon nitride/1-pyrenebutyric acid N-hydroxysuccinimide/polythiophene nanocomposite photoelectrochemical biosensor for CA 19-9 detection. Talanta 2025; 293:128065. [PMID: 40253965 DOI: 10.1016/j.talanta.2025.128065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 03/23/2025] [Accepted: 04/01/2025] [Indexed: 04/22/2025]
Abstract
A photoelectrochemical (PEC) biosensor composed entirely of carbon nanomaterials was synthesized to detect carbohydrate antigen 19-9 (CA 19-9). The biosensor platform integrated graphitic carbon nitride (GCN), known for its light sensitivity, polythiophene (PTh), an organic conductive and optically active material, and 1-pyrenebutyric acid N-hydroxysuccinimide (PBASE), which functions both as a biolinker to conjugate CA 19-9 antibody and antigen and as an electron mediator to facilitate electron transfer from GCN to PTh. The formation of a Schottky heterojunction between PTh and GCN reduced the bandgap of GCN from 2.66 to 1.96 eV, which enhanced transfer of photogenerated electrons for cathodic photocurrent generation. The improvement of charge transfer due to heterojunction formation and π-π stacking between GCN and the pyrene group of PBASE is confirmed by cyclic voltammetry (CV), electron impedance spectroscopy (EIS), and chronoamperometry (CA) findings. The highest current of 1.31 μA is observed for combination of 5 wt% PTh with a GCN/PBASE ratio of 1:0.5. Besides evaluating the electron mobility of GCN/PBASE/PTh, CV, EIS, and CA were also used to evaluate the sensor performance. Optimization studies revealed that 0.6 μg of CA 19-9 antibody and 1 h of antigen-antibody immobilization time significantly improved the biosensor response. The GCN/PBASE/PTh biosensor demonstrated high sensitivity to CA 19-9 antigen across a concentration of 50-1000 U/ml and a detection limit as low as 0.052 U/ml. The reported working range is within the limits required for diagnostic testing of patients with hepatic and heart problems as well as for post-treatment monitoring of colorectal and pancreatic cancer patients.
Collapse
Affiliation(s)
- Adriel Yan Sheng Tan
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China; Nanotechnology Research Group, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Faliang Cheng
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China.
| | - Min Zhang
- Guangdong Engineering and Technology Research Centre for Advanced Nanomaterials, School of Environment and Civil Engineering, Dongguan University of Technology, Dongguan, 523808, China
| | - Michelle T T Tan
- Department of Electrical and Electronic Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan, BE1410, Brunei Darussalam
| | - Kasturi Muthoosamy
- Nanotechnology Research Group, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
2
|
An J, Zhang M, Fu Y, Zhang Q, Si Y, Zhang Y, Fang Y, Zhang D. Emerging electrochemical biosensors for lung cancer-associated protein biomarker and miRNA detection. Int J Biol Macromol 2024; 280:135972. [PMID: 39322139 DOI: 10.1016/j.ijbiomac.2024.135972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/09/2024] [Accepted: 09/22/2024] [Indexed: 09/27/2024]
Abstract
Lung cancer remains a major driver of global morbidity and mortality, and diagnosing lung tumors early in their development is vital to maximizing treatment efficacy and patient survival. Several biomarkers, including CYFRA 21-1, NSE, ProGRP, CEA, and miRNA, have been identified as reliable indicators for early lung cancer detection and monitoring treatment progress. However, the minute changes in the levels of these biomarkers during the early stages of disease necessitate advanced detection platforms. In this space, electrochemical biosensors have currently emerged as robust tools for early lung cancer screening and diagnosis owing to their low costs, rapid responses, and superior sensitivity and selectivity. This review provides an up-to-date overview of the application of electrochemiluminescence, photoelectrochemical, and other electrochemical analytical strategies for detecting lung cancer-associated protein biomarkers, and miRNA. This review compares these techniques to provide a concise overview of the principles underlying these electrochemical analytical methods, the preparation of their components, and the performance of the resulting biosensors. Lastly, a discussion of the challenges and opportunities associated with electrochemical biosensors detection of lung cancer-associated biomarkers are provided.
Collapse
Affiliation(s)
- Jiaying An
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Miao Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yu Fu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Qingxiang Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Si
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Youlin Zhang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 301617, PR China; Tianjin Key Laboratory of Modern Chinese Medicine Theory of Innovation and Application, School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Intelligent and Green Pharmaceuticals for Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Chinese Medicine Modernization, Tianjin 301617, PR China.
| |
Collapse
|
3
|
Yao J. A multiple signal amplification photoelectrochemical biosensor based on biotin-avidin system for kanamycin sensing in fish and milk via synergism of g-C 3N 4 and Ru@SiO 2. Anal Chim Acta 2024; 1288:342141. [PMID: 38220276 DOI: 10.1016/j.aca.2023.342141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
BACKGROUND The residues of kanamycin can accumulate in the human body for a long time and pose serious health risks, including hearing loss, kidney poisoning, and drug allergic reactions. Therefore, it is crucial to develop a rapid, highly sensitive, and low-cost method for detecting kanamycin residues in foods. However, the current methods have limitations such as low sensitivity, expensive instruments, and multiple steps, which make them impractical for use in resource-limited environments and emergencies. In this study, the creation of a multiple-signal amplification photoelectrochemical biosensor to address these aforementioned issues is discussed. RESULTS Herein, we proposed a multiple signal amplification photoelectrochemical (PEC) biosensor based on carboxylated g-C3N4 and avidin functionalized Ru@SiO2 for the ultrasensitive detection of kanamycin. The carboxylated g-C3N4 was a highly efficient photoactive substance for amplifying photoelectric signals and a substrate for aptamer immobilization. The DOS and PDOS of g-C3N4 were studied by simulation, and the sensing mechanism of the probe at the molecular level was revealed. Meanwhile, using Ru@SiO2 as a signal amplifying unit, through the cooperative work between Ru@SiO2 and g-C3N4, the photoelectric signal could be double amplified to produce an excellent photocurrent response. Under optimized conditions, the photocurrent response of the PEC biosensor to kanamycin was obtained at concentrations from 0.1 nM to 1000 nM with a lower detection limit of 4.1052 × 10-11 mol L-1. This protocol demonstrates high sensitivity, brilliant specific recognition ability, excellent reproducibility, and acceptable stability. SIGNIFICANCE The first combination of g-C3N4 and avidin-Ru@SiO2 as photocurrent materials greatly enhanced the sensitivity of the PEC biosensors. Moreover, the specificity and sensitivity of the PEC biosensor were further improved through the specific interaction between kanamycin and aptamer. The photoelectric conversion mechanism based on g-C3N4 and two pathways for enhancing the photocurrent by Ru(byp)32+ were proposed. Through simulations of the DOS and PDOS of g-C3N4, the sensing mechanism of the probe at the molecular level was revealed. Under the optimum conditions, the PEC biosensor exhibited a wide linear concentration range and a low detection limit.
Collapse
Affiliation(s)
- Jun Yao
- College of Food Science and Technology, Sichuan Tourism University, Chengdu, Sichuan Province, 610100, People's Republic of China; Cuisine Science Key Laboratory of Sichuan Province, Sichuan Tourism University, Chengdu, Sichuan Province, 610100, People's Republic of China.
| |
Collapse
|
4
|
Ghasempour A, Dehghan H, Ataee M, Chen B, Zhao Z, Sedighi M, Guo X, Shahbazi MA. Cadmium Sulfide Nanoparticles: Preparation, Characterization, and Biomedical Applications. Molecules 2023; 28:3857. [PMID: 37175267 PMCID: PMC10179838 DOI: 10.3390/molecules28093857] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
Cadmium sulfide nanoparticles (CdS NPs) have been employed in various fields of nanobiotechnology due to their proven biomedical properties. They are unique in their properties due to their size and shape, and they are popular in the area of biosensors, bioimaging, and antibacterial and anticancer applications. Most CdS NPs are generally synthesized through chemical, physical, or biological methods. Among these methods, biogenic synthesis has attracted more attention due to its high efficiency, environmental friendliness, and biocompatibility features. The green approach was found to be superior to other methods in terms of maintaining the structural characteristics needed for optimal biomedical applications. The size and coating components of CdS NPs play a crucial role in their biomedical activities, such as anticancer, antibacterial, bioimaging, and biosensing applications. CdS NPs have gained significant interest in bioimaging due to their desirable properties, including good dispersion, cell integrity preservation, and efficient light scattering. Despite these, further studies are necessary, particularly in vivo studies to reduce NPs' toxicity. This review discusses the different methods of synthesis, how CdS NPs are characterized, and their applications in the biomedical field.
Collapse
Affiliation(s)
- Alireza Ghasempour
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Hamideh Dehghan
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Mehrnaz Ataee
- Student Research Committee, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Bozhi Chen
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zeqiang Zhao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mahsa Sedighi
- Department of Pharmaceutics and Nanotechnology, School of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853076, Iran
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853076, Iran
| | - Xindong Guo
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| |
Collapse
|
5
|
Chen S, Wu M, Shi L, Hong C. Graphene‐Oxide‐Loaded Fe
3
O
4
‐Pd‐Ag Nanoparticles Allow Sensitive Detection of CEA through a Signal Enhancement Strategy**. ChemistrySelect 2023. [DOI: 10.1002/slct.202203063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Siyu Chen
- School of Chemistry and Chemical Engineering Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi 832003, Pepole's Republic of China
| | - Mei Wu
- School of Chemical and Environmental Engineering Key Laboratory of Coal-based Energy and Chemical Industry of Xinjiang Institute of Engineering Urumqi 830000, Pepole's Republic of China
| | - Lei Shi
- School of Chemistry and Chemical Engineering Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi 832003, Pepole's Republic of China
| | - Chenglin Hong
- School of Chemistry and Chemical Engineering Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi 832003, Pepole's Republic of China
| |
Collapse
|
6
|
Redox-labelled detection probe enabled immunoassay for simultaneous detection of multiple cancer biomarkers. Mikrochim Acta 2023; 190:86. [PMID: 36757491 DOI: 10.1007/s00604-023-05663-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/15/2023] [Indexed: 02/10/2023]
Abstract
Some of the cancer biomarkers often lack specificity and sensitivity; thus, simultaneous detection of multiple biomarkers can make the diagnosis more accurate. Also, simple sensing system without utilization of extra reagents like mediator or substrate during detection event is desirable for point-of-care testing. To address this, mediator and substrate-free amperometric biosensor for simultaneous detection of cancer biomarkers carcinoembryonic antigen (CEA) and alpha-fetoprotein (AFP) have been demonstrated by designing two different redox-labelled detection probes. Colloidal nanoparticles of polyaniline-pectin conjugated with AFP antibody along with ferrocene and silver nanoparticles conjugated with CEA antibody along with anthraquinone were used as redox probes to bind with AFP and CEA during the detection event. Sensor constructed using carboxylic acid tethered polyaniline as immobilization matrix displayed 5 times wider linear range than conventional polyaniline for AFP and CEA detection by sandwich electrochemical assay. The detection limit was 30 pg mL-1 for AFP and 80 pg mL-1 for CEA. The biosensor displayed appropriate sensitivity, good specificity, and negligible cross-reactivity between the two targets. The proposed sensor was used to determine APF and CEA in human blood serum. The strategy demonstrated can be further extended for detection of panel of cancer biomarkers by designing appropriate redox probes.
Collapse
|
7
|
Yao J, Zeng X. Photoelectrochemical biosensor based on DNA aptamers and dual nano-semiconductor heterojunctions for accurate and selective sensing of chloramphenicol. Mikrochim Acta 2022; 190:18. [PMID: 36495321 DOI: 10.1007/s00604-022-05573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022]
Abstract
Nanosheets of anatase TiO2 and CdS quantum dots modified with thioglycolic acid (TGA-CdS QDs) were prepared and hierarchically modified on the indium tin oxides (ITO) electrodes. The heterojunction structure is formed to improve the light capture ability and carrier migration, significantly enhancing the sensitivity of photoelectrochemical (PEC) biosensors. Specific DNA sequences labeled with TGA-CdS QDs were placed on the electrodes to prepare a biosensor for the detection of chloramphenicol with ultrahigh selectivity. In addition, the heterojunction structure and the principle of photocurrent signal amplification on the electrode are described in detail. Under the optimal conditions, the photoelectrochemical biosensors showed good reproducibility and stability for chloramphenicol with a linear response in the range 10-10,000 pM and a limit of detection (LOD) of 0.23 pM. Due to the specific recognition of base pairs, the sensor has excellent anti-interference ability in practical applications. An effective method was developed for the accurate detection of antibiotics with far reaching prospects.
Collapse
Affiliation(s)
- Jun Yao
- State Key Laboratory of Oil & Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China.
| | - Xiang Zeng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, 610500, People's Republic of China
| |
Collapse
|
8
|
Catalytic hairpin assembly-mediated Cu2O nanocubes as the competitive dual-quenching tags for photoelectrochemical bioassay of miR-141. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|