1
|
Zhang Y, Tan X, Han Z, Wang Y, Jiang H, Zhang F, Zhu X, Meng C, Huang C. Dual modification of cobalt silicate nanobelts by Co 3O 4 nanoparticles and phosphorization boosting oxygen evolution reaction properties. J Colloid Interface Sci 2025; 679:1036-1045. [PMID: 39418891 DOI: 10.1016/j.jcis.2024.10.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/28/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
Oxygen evolution reaction (OER) process is the "bottleneck" of water splitting, and the low-cost and high-efficient OER catalysts are of great importance and attractive but they are still challenging. Herein, a dual modification strategy is developed to tune and enrich the structure of cobalt silicate (Co2SiO4) showing boosted OER properties. Cobalt oxide (Co3O4) decorated Co2SiO4 nanobelts, denoted as CS, is firstly prepared using a Co-based precursor by a facile hydrothermal reaction. Then, cobalt phosphide (CoP) nanoparticles are in-situ grown on CS (denoted as CS-P) by the phosphorization process, which provide many active sites and boost the surface reactivity. The experimental results and density function theory (DFT) calculations both reveal that the CoP on CS can improve the conductivity and ensure fast kinetics, thus leading to boost the OER properties of Co2SiO4. When the phosphorization temperature is at 400 °C (CS-P400), it gains the lowest overpotential of 297 mV, which is much lower than CS (340 mV) and Co2SiO4 (409 mV) at 10 mA·cm-2, and even superior to the state-of-the-art transition metal silicates. CS-P400 also achieves high electrochemical active surface area (ECSA) and small Tafel slope owing to its porous structures with large specific surface area and nanosheet-like structures which are good for exposing many active sites and favorable to the fast kinetics. This work not only provides a dual modification route to boost catalytic activity of Co2SiO4 (CS-P400), but also sheds light on a new avenue for developing highly dispersed CoP on silicates to boost OER performances.
Collapse
Affiliation(s)
- Yifu Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| | - Xianfang Tan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhixuan Han
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Yang Wang
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Hanmei Jiang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China
| | - Fangfang Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China.
| | - Xiaoming Zhu
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Changgong Meng
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Chi Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
2
|
Jesudass SC, Surendran S, Lim Y, Jo M, Janani G, Choi H, Kwon G, Jin K, Park H, Kim TH, Sim U. Realizing the Electrode Engineering Significance Through Porous Organic Framework Materials for High-Capacity Aqueous Zn-Alkaline Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406539. [PMID: 39506391 DOI: 10.1002/smll.202406539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Indexed: 11/08/2024]
Abstract
Energy storage technologies are eminently developed to address renewable energy utilization efficiently. Porous framework materials possess high surface area and pore volume, allowing for efficient ion transportation and storage. Their unique structure facilitates fast electron transfer, leading to improved battery kinetics. Porous organic framework materials like metal-organic (MOF) and covalent organic (COF) frameworks have immense potential in enhancing the charge/discharge performances of aqueous Zn-alkaline batteries. Organic frameworks and their derivatives can be modified feasibly to exhibit significant chemical stability, enabling them to tolerate the harsh battery environment. Zn-alkaline batteries can achieve enhanced energy density, longer lifespan, and improved rechargeability by incorporating MOFs and COFs, such as electrodes, separators, or electrolyte additives, into the battery architecture. The present review highlights the significant electrode design strategies based on porous framework materials for aqueous Zn-alkaline batteries, such as Zn-Ni, Zn-Mn, Zn-air, and Zn-N2/NO3 batteries. Besides, the discussion on the issues faced by the Zn anode and the essential anode design strategies to solve the issues are also included.
Collapse
Affiliation(s)
- Sebastian Cyril Jesudass
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Subramani Surendran
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Yoongu Lim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Minjun Jo
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Gnanaprakasam Janani
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
| | - Heechae Choi
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou, 215123, China
| | - Gibum Kwon
- Department of Mechanical Engineering, University of Kansas, Lawrence, 66045, USA
| | - Kyoungsuk Jin
- Department of Chemistry, Korea University, Seoul, 02841, Republic of Korea
| | - Hyunjung Park
- Department of Materials Science and Engineering, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae-Hoon Kim
- Department of Materials Science & Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Uk Sim
- Hydrogen Energy Technology Laboratory, Korea Institute of Energy Technology (KENTECH), Naju, Jeollanamdo, 58330, Republic of Korea
- Research Institute, NEEL Sciences, INC., Naju, Jeollanamdo, 58326, Republic of Korea
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang, 471934, P. R. China
| |
Collapse
|
3
|
Tan X, Dong X, Zhang F, Huang C, Zhang Y. Structure engineering of nickel silicate/carbon composite with boosted electrochemical performances for hybrid supercapacitors. J Colloid Interface Sci 2024; 674:67-78. [PMID: 38909595 DOI: 10.1016/j.jcis.2024.06.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/17/2024] [Accepted: 06/19/2024] [Indexed: 06/25/2024]
Abstract
In the wake of the carbon-neutral era, the exploration of innovative materials for energy storage and conversion has garnered increasing attention. While nickel silicates have been a focal point in energy storage research, their application in supercapacitors (SCs) has been relatively underreported due to poor conductivity. A newly designed architecture, designated as rGO@NiSiO@NiO/C (abbreviated for reduced graphene oxide (rGO), nickel silicate (NiSiO), nickel oxide/carbon (NiO/C)), has been developed to enhance the electrochemical performance of NiSiO. The incorporation of inner rGO provides structural support for NiSiO, enhancing conductivity, while the outer NiO/C layer not only boosts conductivity but also safeguards NiSiO from structural degradation and electrolyte dissolution. This architecture eliminates multi-phase mixtures, facilitating rapid electron/mass transfer kinetics and accelerating electrochemical reactions, resulting in exceptional electrochemical properties. The rGO@NiSiO@NiO/C architecture achieves a specific capacitance of 324F·g-1 at 0.5 A·g-1, with a superb cycle performance of ∼ 91 % after 10,000 cycles, surpassing state-of-the-art nickel silicates. Furthermore, the hybrid supercapacitor (HSC) device incorporating the rGO@NiSiO@NiO/C electrode attains an areal capacitance of 159 mF·cm-2 at 2.5 mA·cm-2, a retention ratio of ∼ 98 % after 10,000 cycles, and an energy density of 0.68 Wh·m-2 (26.7 Wh·kg-1) at 3.4 W·m-2 (343.8 W·kg-1). This study presents a layer-by-layer approach for constructing transition metal silicates/C architectures to enhance their electrochemical performance.
Collapse
Affiliation(s)
- Xianfang Tan
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Xueying Dong
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Chi Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yifu Zhang
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China; School of Chemistry, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Liao Y, Yang C, Bai J, He Q, Wang H, Chen H, Zhang Q, Chen L. Insights into the cycling stability of manganese-based zinc-ion batteries: from energy storage mechanisms to capacity fluctuation and optimization strategies. Chem Sci 2024; 15:7441-7473. [PMID: 38784725 PMCID: PMC11110161 DOI: 10.1039/d4sc00510d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/18/2024] [Indexed: 05/25/2024] Open
Abstract
Manganese-based materials are considered as one of the most promising cathodes in zinc-ion batteries (ZIBs) for large-scale energy storage applications owing to their cost-effectiveness, natural availability, low toxicity, multivalent states, high operation voltage, and satisfactory capacity. However, their intricate energy storage mechanisms coupled with unsatisfactory cycling stability hinder their commercial applications. Previous reviews have primarily focused on optimization strategies for achieving high capacity and fast reaction kinetics, while overlooking capacity fluctuation and lacking a systematic discussion on strategies to enhance the cycling stability of these materials. Thus, in this review, the energy storage mechanisms of manganese-based ZIBs with different structures are systematically elucidated and summarized. Next, the capacity fluctuation in manganese-based ZIBs, including capacity activation, degradation, and dynamic evolution in the whole cycle calendar are comprehensively analyzed. Finally, the constructive optimization strategies based on the reaction chemistry of one-electron and two-electron transfers for achieving durable cycling performance in manganese-based ZIBs are proposed.
Collapse
Affiliation(s)
- Yanxin Liao
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Chun Yang
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University Qingdao 266071 China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University Hong Kong SAR 999077 China
| | - Jie Bai
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Qingqing He
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Huayu Wang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| | - Haichao Chen
- Institute of Materials for Energy and Environment, School of Materials Science and Engineering, Qingdao University Qingdao 266071 China
| | - Qichun Zhang
- Department Materials Science and Engineering, Department of Chemistry, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong Kowloon Hong Kong SAR 999077 China
| | - Lingyun Chen
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Chongqing University Chongqing 401331 China
| |
Collapse
|
5
|
Jiang W, Wang W, Shi H, Hu R, Hong J, Tong Y, Ma J, Jing Liang C, Peng J, Xu Z. Homogeneous regulation of arranged polymorphic manganese dioxide nanocrystals as cathode materials for high-performance zinc-ion batteries. J Colloid Interface Sci 2023; 647:124-133. [PMID: 37247476 DOI: 10.1016/j.jcis.2023.05.148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023]
Abstract
Rechargeable aqueous zinc-ion batteries have emerged as attractive energy storage devices by virtue of their low cost, high safety and eco-friendliness. However, zinc-ion cathodes are bottlenecked by their vulnerable crystal structures in the process of zinc embedding and significant capacity fading during long-term cycling. Herein, we report the rational and homogeneous regulation of polycrystalline manganese dioxide (MnO2) nanocrystals as zinc cathodes via a surfactant template-assisted strategy. Benefiting from the homogeneous regulation, MnO2 nanocrystals with an ordered crystal arrangement, including nanorod-like polyvinylpyrrolidone-manganese dioxide (PVP-MnO2), nanowire-like sodium dodecyl benzene sulfonate-manganese dioxide and nanodot-like cetyltrimethylammonium bromide-manganese dioxide, are obtained. Among these, the nanorod-like PVP-MnO2 nanocrystals exhibit stable long-life cycling of 210 mAh g-1 over 180 cycles at a high rate of 0.3 A g-1 and with a high capacity retention of 84% over 850 cycles at a high rate of 1 A g-1. The good performance of this cathode significantly results from the facile charge and mass transfer at the interface between the electrode and electrolyte, featuring the crystal stability and uniform morphology of the arranged MnO2 nanocrystals. This work provides crucial insights into the development of advanced MnO2 cathodes for low-cost and high-performance rechargeable aqueous zinc-ion batteries.
Collapse
Affiliation(s)
- Wanwei Jiang
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China.
| | - Wei Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Haiting Shi
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Renzong Hu
- School of Materials Science and Engineering, Guangdong Provincial Key Laboratory of Advanced Energy Storage Materials, South China University of Technology, Guangzhou 510640, China.
| | - Jie Hong
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Yun Tong
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Jun Ma
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Cheng Jing Liang
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Jingfu Peng
- Jiangsu Advanced Textile Engineering Technology Center, Jiangsu College of Engineering and Technology, Jiangsu 226007, China
| | - Zhiwei Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China.
| |
Collapse
|
6
|
Zhang N, Wang JC, Guo YF, Wang PF, Zhu YR, Yi TF. Insights on rational design and energy storage mechanism of Mn-based cathode materials towards high performance aqueous zinc-ion batteries. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.215009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
MOFs for Electrochemical Energy Conversion and Storage. INORGANICS 2023. [DOI: 10.3390/inorganics11020065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Metal organic frameworks (MOFs) are a family of crystalline porous materials which attracts much attention for their possible application in energy electrochemical conversion and storage devices due to their ordered structures characterized by large surface areas and the presence in selected cases of a redox-active porous skeleton. Their synthetic versatility and relevant host-guest chemistry make them suitable platform for use in stable and flexible conductive materials. In this review we summarize the most recent results obtained in this field, by analyzing the use of MOFs in fuel and solar cells with special emphasis on PEMFCs and PSCs, their application in supercapacitors and the employment in batteries by differentiating Li-, Na- and other metal ion-batteries. Finally, an overview of the water splitting reaction MOF-catalyzed is also reported.
Collapse
|
8
|
Zhou Y, Wang C, Chen F, Wang T, Ni Y, Yu N, Geng B. Scalable fabrication of NiCoMnO4 yolk-shell microspheres with gradient oxygen vacancies for high-performance aqueous zinc ion batteries. J Colloid Interface Sci 2022; 626:314-323. [DOI: 10.1016/j.jcis.2022.06.152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 10/31/2022]
|
9
|
Mu Y, Zhang Y, Pei X, Dong X, Kou Z, Cui M, Meng C. Dispersed FeO x nanoparticles decorated with Co 2SiO 4 hollow spheres for enhanced oxygen evolution reaction. J Colloid Interface Sci 2021; 611:235-245. [PMID: 34953456 DOI: 10.1016/j.jcis.2021.12.099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
Oxygen evolution reaction (OER) has drawn ever-increasing attention because of its essential role in various renewable-energy technologies. In spite of tremendous research efforts, developing high-performance OER catalysts at low cost remains a great challenge. Inspired by two earth-abundant elements Fe and Si, herein, we report a Fe-Co2SiO4 composite consisting of well dispersed iron oxide (FeOx) decorated Co2SiO4 hollow nanospheres as an economical and promising OER catalyst. Although Co2SiO4 or FeOx alone has little OER activity, their composite exhibits satisfied performance, that is highly related to geometric effect and bimetal component electronic interactions. The Fe-Co2SiO4 composite exhibits comparable catalytic activity to most of transition mental oxide/hydroxide relevant composites at 10 mA cm-2. It is even 1.6 times higher than commercial RuO2 electrocatalyst at high current density 100 mA cm-2 in alkaline solution. In this work, surface decoration of transition metal silicate provides a new horizon to design high-performance and economical OER catalysts.
Collapse
Affiliation(s)
- Yang Mu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yifu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Xiaoyu Pei
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xueying Dong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Zongkui Kou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Miao Cui
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|