1
|
Naggar AH, Seaf-Elnasr TA, Thabet M, El-Monaem EMA, Chong KF, Bakr ZH, Alsohaimi IH, Ali HM, El-Nasser KS, Gomaa H. A hybrid mesoporous composite of SnO 2 and MgO for adsorption and photocatalytic degradation of anionic dye from a real industrial effluent water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108247-108262. [PMID: 37747604 DOI: 10.1007/s11356-023-29649-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023]
Abstract
Water pollution by synthetic anionic dyes is one of the most critical ecological concerns and challenges. Therefore, there is an urgent need to find an efficient adsorbent and photocatalyst for dye removal. In the present study, we aimed to fabricate a hybrid mesoporous composite of spongy sphere-like SnO2 and three-dimensional (3D) cubic-like MgO (SnO2/MgO) as a promising adsorbent/photocatalyst to remove the anionic sunset yellow (SSY) dye from real wastewater at neutral pH conditions. The as-synthesized SnO2 and MgO composite was investigated using XRD, SEM, EDX, TEM, XPS, BET, and zeta potential. The experimental study of the SSY removal using SnO2/MgO composite was performed at different conditions, such as pH, stirring time, dose, and temperature. More than 99% of 10 mg/L SSY was effectively adsorbed from aqueous solution using 40 mg of SnO2/MgO composite at pH 7 and a stirring time of 60 min. The SSY adsorption behavior was well fitted by pseudo-second order and the Langmuir model, indicating that the SSY was chemisorbed to the composite-active sites as a monolayer. On the other hand, photocatalytic degradation process exhibited better results in terms of speed of removal and used quantity of photocatalyst, where 20 mg of SnO2/MgO composite can be used to remove > 99% of SSY dye within 30 min. Mechanism of SSY adsorption and photocatalytic degradation was discussed. In addition, elution experiments demonstrated that the SnO2/MgO composite as an SSY adsorbent could be reused for nine cycles without considerable reduction in the SSY adsorption efficiency. Therefore, this work exhibited that the mesoporous SnO2/MgO composite can be considered an effective adsorbent/photocatalyst to remove SSY dye from real industrial effluent water at neutral pH conditions.
Collapse
Affiliation(s)
- Ahmed H Naggar
- Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat, 75911, Kingdom of Saudi Arabia
| | - Tarek A Seaf-Elnasr
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia.
| | - Mahmoud Thabet
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Kwok F Chong
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, 26300, Kuantan, Gambang, Malaysia
| | - Zinab H Bakr
- Physics Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| | - Ibrahim H Alsohaimi
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia
| | - Hazim M Ali
- Department of Chemistry, College of Science, Jouf University, P.O. Box 2014, Sakaka, Aljouf, Kingdom of Saudi Arabia
- Forensic Chemistry Department, Forensic Medicine Authority, Cairo, Egypt
| | - Karam S El-Nasser
- Department of Chemistry, College of Science and Arts, Jouf University, Al Qurayyat, 75911, Kingdom of Saudi Arabia
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
| | - Hassanien Gomaa
- Department of Chemistry, Faculty of Science, Al-Azhar University, Assiut, 71524, Egypt
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300401, China
| |
Collapse
|
2
|
Pramono E, Umam K, Sagita F, Saputra OA, Alfiansyah R, Setyawati Dewi RS, Kadja GT, Ledyastuti M, Wahyuningrum D, Radiman CL. The enhancement of dye filtration performance and antifouling properties in amino-functionalized bentonite/polyvinylidene fluoride mixed matrix membranes. Heliyon 2023; 9:e12823. [PMID: 36685376 PMCID: PMC9852663 DOI: 10.1016/j.heliyon.2023.e12823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
Trade-off issue and membrane fouling remain two major issues in the utilization of membrane technology for the water treatment due to reduced membrane permeability and lifetime. In our study, we employed 3-aminopropyltriethoxysilane modified bentonite (BNTAPS) as an anti-fouling modifier to prepare polyvinylidene fluoride (PVDF)-based membranes via the phase inversion method. The effects of BNTAPS concentration on the physical, mechanical, morphological, and filtration performance of the hybrid membranes have been investigated. It was found that the addition of BNTAPS improved the hydrophilicity of the membrane revealed by the decreased water contact angle. Consequently, the pure water flux of PVDF membrane containing 0.5% BNTAPS (PVDF/BNTAPS0.5%) increased to 35.5 L m-2 h-1. Moreover, the PVDF/BNTAPS membrane showed a smaller pore diameter and porosity compared to pristine PVDF. The membrane performance evaluation was carried out using cationic and anionic dyes, i.e., methylene blue (MB) and acid yellow (AY17), respectively. Our study revealed that the rejection of each dye was slightly increased for the PVDF/BNTAPS0.5%. However, the flux recovery rate of the PVDF/BNTAPS membrane significantly improved, which directly prolonged the membrane lifetime.
Collapse
Affiliation(s)
- Edi Pramono
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami no. 36A, Surakarta, 57216, Indonesia
| | - Khairul Umam
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Textile Chemistry Division, Politeknik STTT Bandung, Jl. Jakarta no. 31, Bandung, 40272, Indonesia
| | - Fuja Sagita
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Ozi Adi Saputra
- Chemistry Department, Faculty of Mathematics and Natural Sciences, Universitas Sebelas Maret, Jl. Ir. Sutami no. 36A, Surakarta, 57216, Indonesia
| | - Rifki Alfiansyah
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Rahmi Sri Setyawati Dewi
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Grandprix T.M. Kadja
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Center for Catalysis and Reaction Engineering, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Research Center for Nanosciences and Nanotechnology, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Mia Ledyastuti
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Deana Wahyuningrum
- Organic Chemistry Division, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia
| | - Cynthia L. Radiman
- Division of Inorganic and Physical Chemistry, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Jalan Ganesha no. 10, Bandung, 40132, Indonesia,Corresponding author. Jl. Ganesha 10, Bandung, 40132, Indonesia.
| |
Collapse
|
4
|
Thomas P, Lai CW, Johan MR. Facile synthesis of multifunctional C@Fe 3O 4-MoO 3-rGO ternary composite and its versatile roles as sonoadsorbent to ameliorate triphenylmethane textile dye and as potential electrode for supercapacitor applications. ENVIRONMENTAL RESEARCH 2022; 212:113417. [PMID: 35569532 DOI: 10.1016/j.envres.2022.113417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/01/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
The toxic wastewater effluents from textile dyes have been a significant environmental threat worldwide in recent decades. Against this backdrop, this study investigates the performance of C@Fe3O4-MoO3-rGO as a sonoadsorbent to ameliorate crystal violet (CV) dye from the aqua matrix and further explores its potential as an electrode in supercapacitor applications. The phase purity, crystal structure, surface morphology, thermal stability and magnetic behaviour characteristics of the composite were studied using various characterisation techniques such as powder X-ray diffraction (XRD), Raman Spectroscopy, Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), High-resolution transmission electron microscopy (HRTEM), Thermogravimetric analysis (TGA) and Vibrating-sample magnetometry (VSM). From the Langmuir isotherm model, the synthesised sonoadsorbent exhibited a maximum adsorption capacity of 1664.26 mg/g for crystal violet, which is remarkably high. Further, to its inherited magnetic characteristics, the composite can be easily separated from the solution by using an external magnet. Furthermore, the working electrode was synthesised with 80% active material, 10% carbon black, and 10% polyvinylidene difluoride to investigate its suitability in supercapacitor applications. The C@Fe3O4-MoO3-rGO composite exhibited an excellent capacitance value of 180.36 F/g with commendable cycling stability, making it suitable as a potential cathode material for the next generation supercapacitors.
Collapse
Affiliation(s)
- Paul Thomas
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Level 3, Block A, 50603, Kuala Lumpur, Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Level 3, Block A, 50603, Kuala Lumpur, Malaysia.
| | - Mohd Rafie Johan
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies (IAS), University of Malaya (UM), Level 3, Block A, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|