1
|
Sheng W, Zhou X, Ajmal S, Chen X, Ma Y, Chen P, Zhu M, Li P. Dual-doped medium-entropy phosphides for complete urea electrolysis. J Colloid Interface Sci 2025; 678:1192-1202. [PMID: 39342864 DOI: 10.1016/j.jcis.2024.09.142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/02/2024] [Accepted: 09/14/2024] [Indexed: 10/01/2024]
Abstract
Developing dual-functional electrocatalysts for urea-water decomposition still faces significant challenges. In this study, the vanadium (V) and cerium (Ce) co-doped FeCoNi medium-entropy phosphide (VCe-FeCoNiP/NF) were effectively fabricated on nickel foam (NF) via "two-step method," which involved hydrothermal treatment followed by phosphorization. Experimental results indicate that, benefiting from dual-ion doping and medium-entropy configuration, VCe-FeCoNiP/NF demonstrates unique electronic effects among the multimetallic elements, thereby exhibited remarkable catalytic activity for both urea oxidation reaction (UOR) and hydrogen evolution reaction (HER). Under urea-water conditions (1 M KOH with 0.33 M urea), the VCe-FeCoNi/NF catalyst merely required 1.338 V (vs RHE) and an overpotential of 173 mV to attain a current density of 100 mA·cm-2 for UOR and HER, respectively. Moreover, it could stably operate at a current density of 20 mA·cm-2 for 225 h in overall urea-water decomposition. This work provides new insights for designing high-performance urea-water electrolysis catalysts.
Collapse
Affiliation(s)
- Wenxiang Sheng
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Xiaoxing Zhou
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Sara Ajmal
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Xiao Chen
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Yuanhang Ma
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Ping Chen
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China
| | - Mangzhou Zhu
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China
| | - Peng Li
- School of Materials Science and Engineering, Anhui University, Hefei, Anhui 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Anhui Province Key Laboratory of Chemistry for In-organic/Organic Hybrid Functionalized Materials, Anhui University, Hefei 230601, PR China.
| |
Collapse
|
2
|
Kalaiyarasan G, Lee D, Lee JW, Ko MJ. Electrochemical Synthesis of Nickel Hexacyanoferrate and Nickel Sulfide on Nickel Foam as Sustainable Electrocatalysts for Hydrogen Generation via Urea Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69142-69152. [PMID: 39644226 DOI: 10.1021/acsami.4c12763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2024]
Abstract
A promising approach to energy-efficient hydrogen production is coupling the hydrogen evolution reaction (HER) with the urea oxidation reaction (UOR), significantly reducing the energy requirements. However, achieving a low-cost yet high-performance electrocatalyst for both HER and UOR remains challenging. Here, we present a facile method for synthesizing nanoporous nickel sulfide (NiS) and nickel hexacyanoferrate (NiHCF) nanocubes directly on nickel foam (NF) without any added nickel source using a cyclic voltammetry technique. In this approach, NF serves simultaneously as the substrate and nickel source, streamlining the synthesis process. The unique nanoarchitecture of NiHCF and NiS promotes highly efficient catalytic activity for both UOR and HER. NiHCF catalyzes urea oxidation by dual active sites of Ni and Fe with its synergistic interaction, without the formation of NiOOH or FeOOH. For hydrogen production, the self-supporting NiHCF/NF||NiS/NF-coupled system achieves a notably low cell voltage of 1.8 V at 100 mA cm-2, which is approximately 487 mV lower than traditional IrO2/NF||Pt/C/NF water electrolysis. This innovative electrochemical method enables the controlled synthesis of Ni-based nanoelectrocatalysts, offering a sustainable, energy-efficient pathway for H2 production from urea-rich wastewater. This environmentally friendly strategy holds significant potential to reduce the global carbon footprint, paving the way for a greener future.
Collapse
Affiliation(s)
- Gopi Kalaiyarasan
- Department of Chemical Engineering, Hanyang University (Seoul Campus), 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Doyeon Lee
- Department of Chemical Engineering, Hanyang University (Seoul Campus), 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jae W Lee
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291, Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Min Jae Ko
- Department of Chemical Engineering, Hanyang University (Seoul Campus), 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| |
Collapse
|
3
|
Vadivel N, Murthy AP. Recent Developments in Membrane-Free Hybrid Water Electrolysis for Low-Cost Hydrogen Production Along with Value-Added Products. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2407845. [PMID: 39431317 DOI: 10.1002/smll.202407845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/01/2024] [Indexed: 10/22/2024]
Abstract
Water electrolysis using renewable energy is considered as a promising technique for sustainable and green hydrogen production. Conventional water electrolysis has two components - hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) occurring at the cathode and anode respectively. However, electrolysis of water suffers from high overpotential due to the slow kinetics of OER. To overcome this hybrid water electrolysis has been developed by replacing conventional anode oxidation producing oxygen with oxidation of cost-effective materials producing value-added chemicals. This review summarizes recent advances in organic oxidative reactions such as alcohols, urea, hydrazine, and biomass at the anode instead of OER. Furthermore, the review also highlights the use of membrane-free hybrid water electrolysis as a method to overcome the cost and complexity associated with conventional membrane-based electrolyzer thereby improving overall efficiency. This approach holds promise for scalable and cost-effective large-scale hydrogen production along with value-added products. Finally, current challenges and future perspectives are discussed for further development in membrane-free hybrid water electrolysis.
Collapse
Affiliation(s)
- Neshanth Vadivel
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Arun Prasad Murthy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| |
Collapse
|
4
|
Zhao Y, Li J, He Y, Wang X, Ma C, Zhan T, Chen L, Wang J, Ling Q, Wu X, Xiao Z, Cai J, Wu P. Efficient Hydrogen Production over Molybdenum Tungsten Bimetallic Oxide NF/PMo nW 12-n Catalyst on Nickel Foam. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12089-12096. [PMID: 38804669 DOI: 10.1021/acs.langmuir.4c00944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Developing inexpensive, efficient, and stable catalysts is crucial for reducing the cost of electrolytic hydrogen production. Recently, polyoxometalates (POMs) have gained attention and widespread use due to their excellent electrocatalytic properties. This study designed and synthesized three composite materials, NF/PMonW12-n, by using phosphomolybdic-tungstic heteropolyacids as precursors to grow in situ on nickel foam via the hydrothermal process and subsequent calcination. Then, their catalytic performances are systematically investigated. This work demonstrates that the NF/PMonW12-n catalysts generate more low valent oxides under the synergistic effect of Mo and W, further enhancing activity for hydrogen evolution reaction (HER). Among these electrocatalysts, NF/PMo6W6 exhibits the perfect HER performance, η10 is only 74 mV. It also shows great stability during long-term electrolysis. The current study introduces a fresh approach for producing electrocatalysts that are both cost-effective and highly efficient.
Collapse
Affiliation(s)
- Yanchao Zhao
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Jincheng Li
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Yuzhou He
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Xingyue Wang
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Chunhui Ma
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Taozhu Zhan
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Lihong Chen
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Jiani Wang
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Qian Ling
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Xuefei Wu
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co, Ltd., Dalian 116045, Liaoning, China
| | - Zicheng Xiao
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| | - Jinlong Cai
- Department of Electronic Science and Technology, School of Science, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Pingfan Wu
- Institute of POM-Based Materials, Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430086, Hubei, China
| |
Collapse
|
5
|
Yu J, Li Z, Wang C, Xu X, Liu T, Chen D, Shao Z, Ni M. Engineering advanced noble-metal-free electrocatalysts for energy-saving hydrogen production from alkaline water via urea electrolysis. J Colloid Interface Sci 2024; 661:629-661. [PMID: 38310771 DOI: 10.1016/j.jcis.2024.01.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/06/2024]
Abstract
When the anodic oxygen evolution reaction (OER) of water splitting is replaced by the urea oxidation reaction (UOR), the electrolyzer can fulfill hydrogen generation in an energy-economic manner for urea electrolysis as well as sewage purification. However, owing to the sluggish kinetics from a six-electron process for UOR, it is in great demand to design and fabricate high-performance and affordable electrocatalysts. Over the past years, numerous non-precious materials (especially nickel-involved samples) have offered huge potential as catalysts for urea electrolysis under alkaline conditions, even in comparison with frequently used noble-metal ones. In this review, recent efforts and progress in these high-efficiency noble-metal-free electrocatalysts are comprehensively summarized. The fundamentals and principles of UOR are first described, followed by highlighting UOR mechanism progress, and then some discussion about density functional theory (DFT) calculations and operando investigations is given to disclose the real reaction mechanism. Afterward, aiming to improve or optimize UOR electrocatalytic properties, various noble-metal-free catalytic materials are introduced in detail and classified into different classes, highlighting the underlying activity-structure relationships. Furthermore, new design trends are also discussed, including targetedly designing nanostructured materials, manipulating anodic products, combining theory and in situ experiments, and constructing bifunctional catalysts. Ultimately, we point out the outlook and explore the possible future opportunities by analyzing the remaining challenges in this booming field.
Collapse
Affiliation(s)
- Jie Yu
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China; Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Zheng Li
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Chen Wang
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Xiaomin Xu
- WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia, 6102, Australia
| | - Tong Liu
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China
| | - Daifen Chen
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, PR China
| | - Zongping Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 210009, PR China; WA School of Mines: Minerals, Energy and Chemical Engineering (WASM-MECE), Curtin University, Perth, Western Australia, 6102, Australia.
| | - Meng Ni
- Department of Building and Real Estate, Research Institute for Sustainable Urbanization (RISUD), Research Institute for Smart Energy (RISE), The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, PR China.
| |
Collapse
|
6
|
Ma J, Zhang T, Yin F, Wang J, Zhang Z, Sun C. Modulating the electronic structure of Mo 2C/MoP heterostructure to boost hydrogen evolution reaction in a wide pH range. J Colloid Interface Sci 2023; 650:506-514. [PMID: 37421753 DOI: 10.1016/j.jcis.2023.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/10/2023]
Abstract
Interface engineering is an effective strategy for the design of electrochemical catalysts with attractive performance for hydrogen evolution reaction. Herein, the Molybdenum carbide/molybdenum phosphide (Mo2C/MoP) heterostructure deposited on nitrogen (N), phosphorous (P) co-doped carbon substrate (Mo2C/MoP-NPC) is fabricated by one-step carbonization. The electronic structure of Mo2C/MoP-NPC is changed by optimizing the ratio of phytic acid and aniline. The calculation and experimental results also show that there is an electron interaction on the Mo2C/MoP interface, which optimizes the adsorption free energy of hydrogen (H) and improves the performance of hydrogen evolution reaction. Mo2C/MoP-NPC exhibits significant low overpotentials at 10 mA·cm-2 current density, 90 mV in 1 M KOH and 110 mV in 0.5 M H2SO4, respectively. In addition, it shows superior stability over a broad pH range. This research provides an effective method for the construction of novel heterogeneous electrocatalysts and is conducive to the development of green energy.
Collapse
Affiliation(s)
- Jingwen Ma
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China.
| | - Tianai Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Fusheng Yin
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Jun Wang
- PetroChina Planning and Engineering Institute, Beijing 100083, China
| | - Zhijun Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| | - Chunwen Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China
| |
Collapse
|
7
|
Ai L, Wang X, Luo J, Jiang J. Superwettable and photothermal all-in-one electrocatalyst for boosting water/urea electrolysis. J Colloid Interface Sci 2023; 644:134-145. [PMID: 37105037 DOI: 10.1016/j.jcis.2023.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/28/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023]
Abstract
Developing multifunctional all-in-one electrocatalysts for energy-saving hydrogen generation remains a challenge. In this study, a simple and feasible thermal phosphorization strategy is explored to rationally construct P-doped MoO2-NiMoO4 heterostructure on nickel foam (NF). The heterointerfaced P-MoO2-NiMoO4/NF can simultaneously realize the integrated all-in-one functionalities, innovatively introducing superwettable surfaces, photothermal conversion capabilities and electrocatalytic functions. The superwettability gives P-MoO2-NiMoO4/NF sufficient electrolyte permeation and smooth bubble detachment. The plasmonic MoO2 with photothermal performance greatly elevates the local surface temperature of in P-MoO2-NiMoO4/NF, which is conducive to improve the electrocatalytic efficiency. The favorable in-situ surface reconstruction brings abundant active sites for electrocatalytic reactions. As an advanced multifunctional electrocatalyst, the superwettable and photothermal P-MoO2-NiMoO4/NF exhibits significantly improved performances in oxygen evolution reaction (OER) and urea oxidation reaction (UOR). More importantly, the highly efficient and stable overall water-urea electrolysis assisted by photothermal fields can be simply achieved by exposing P-MoO2-NiMoO4/NF to near-infrared (NIR) light.
Collapse
Affiliation(s)
- Lunhong Ai
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Xinzhi Wang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jingyu Luo
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China
| | - Jing Jiang
- College of Materials Science and Engineering, Chongqing Jiaotong University, Chongqing 400074, China.
| |
Collapse
|
8
|
Jiang LH, Cheng XF, Zhang HY, Cao Q, Song K, He JH. Self-supported spinel nanosphere as bifunctional electrocatalysts for energy-saving hydrogen production via urea-water electrolysis. J Colloid Interface Sci 2023; 643:403-408. [PMID: 37084620 DOI: 10.1016/j.jcis.2023.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 04/23/2023]
Abstract
Electrochemical oxidation of urea is of great importance in the removal and energy exchange and storage of urea from wastewater as well as of potential applications in potable dialysis of end-stage renal disease. However, the lack of economical electrocatalysts hinders its widespread application. In this study, we successfully fabricated ZnCo2O4 nanospheres with bifunctional catalysis on nickel foam (NF). The catalytic system has high catalytic activity and durability for urea overall electrolysis. The urea oxidation and hydrogen evolution reactions required only 1.32 V and -80.91 mV to obtain ± 10 mA cm-2. Only 1.39 V was needed to obtain 10 mA cm-2 for 40 h without noticeably declining activity. The excellent performance could be attributed to the fact that the material can provide multiple redox couplings and a three-dimensional porous structure to facilitate the release of gases from the surface.
Collapse
Affiliation(s)
- Li-Hua Jiang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Xue-Feng Cheng
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Hao-Yu Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Qiang Cao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China
| | - Kai Song
- Department of Nephrology, Second Affiliated Hospital of Soochow University, Suzhou, PR China.
| | - Jing-Hui He
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
9
|
Zhang Z, Lin X, Tang S, Xie H, Huang Q. Self-supported system of MoO2@Ni2P heterostructures as an efficient electrocatalyst for hydrogen evolution reactions in alkaline media. J Colloid Interface Sci 2023; 630:494-501. [DOI: 10.1016/j.jcis.2022.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
|
10
|
Ma K, Wang H, Kannan P, Subramanian P. Ni 2P Nanoparticle-Inserted Porous Layered NiO Hetero-Structured Nanosheets as a Durable Catalyst for the Electro-Oxidation of Urea. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3633. [PMID: 36296823 PMCID: PMC9611741 DOI: 10.3390/nano12203633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The electro-oxidation of urea (EOU) is a remarkable but challenging sustainable technology, which largely needs a reduced electro-chemical potential, that demonstrates the ability to remove a notable harmful material from wastewater and/or transform the excretory product of humans into treasure. In this work, an Ni2P-nanoparticle-integrated porous nickel oxide (NiO) hetero-structured nanosheet (Ni2P@NiO/NiF) catalyst was synthesized through in situ acid etching and a gas-phase phosphating process. The as-synthesized Ni2P@NiO/NiF catalyst sample was then used to enhance the electro-oxidation reaction of urea with a higher urea oxidation response (50 mA cm-2 at 1.31 V vs. RHE) and low onset oxidation potential (1.31 V). The enhanced activity of the Ni2P@NiO/NiF catalyst was mainly attributed to effective electron transport after Ni2P nanoparticle insertion through a substantial improvement in active sites due to a larger electrochemical surface area, and a faster diffusion of ions occurred via the interactive sites at the interface of Ni2P and NiO; thus, the structural reliability was retained, which was further evidenced by the low charge transfer resistance. Further, the Ni2P nanoparticle insertion process into the NiO hetero-structured nanosheets effectively enabled a synergetic effect when compared to the counter of the Ni2P/NiF and NiO/NiF catalysts. Finally, we demonstrate that the as-synthesized Ni2P@NiO/NiF catalyst could be a promising electrode for the EOU in urea-rich wastewater and human urine samples for environmental safety management. Overall, the Ni2P@NiO/NiF catalyst electrode combines the advantages of the Ni2P catalyst, NiO nanosheet network, and NiF current collector for enhanced EOU performance, which is highly valuable in catalyst development for environmental safety applications.
Collapse
Affiliation(s)
- Kun Ma
- Department of Internet, Jiaxing Vocational Technical College, Jiaxing 314001, China
| | - Hui Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Palanisamy Kannan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | | |
Collapse
|