Yang WD, Zhao RD, Xiang J, Loy S, Di YF, Li J, Li MT, Ma DM, Wu FF. 3D hierarchical ZnCo
2S
4@Ni(OH)
2 nanowire arrays with excellent flexible energy storage and electrocatalytic performance.
J Colloid Interface Sci 2022;
626:866-878. [PMID:
35820221 DOI:
10.1016/j.jcis.2022.07.020]
[Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/22/2022] [Accepted: 07/04/2022] [Indexed: 01/18/2023]
Abstract
It is essential for energy storage and conversion systems to construct electrodes and electrocatalysts with superior performance. In this work, ZnCo2S4@Ni(OH)2 nanowire arrays are synthesized on nickel foam by hydrothermal methods. As a supercapacitor electrode, the ZnCo2S4@Ni(OH)2 structure exhibits a specific capacitance of 1,263.0C g-1 at 1 A g-1. The as-fabricated ZnCo2S4@Ni(OH)2//active carbon device can achieve a maximum energy density of 115.4 Wh kg-1 at a power density of 5,400 W kg-1. As electrocatalysts, the ZnCo2S4@Ni(OH)2 structure delivers outstanding performance for oxygen evolution reaction (an overpotential of 256.3 mV at 50 mA cm-2), hydrogen evolution reaction (141.7 mV at 10 mA cm-2), overall water splitting (the cell voltage of 1.53 V at 50 mA cm-2), and a high stability for 13 h.
Collapse