1
|
Pan Z, Wang C, Liu X, Xu R, Xin H, Yu H, Li L, Zhao S, Song C, Wang T. MnOOH/carbon-based reactive electrochemical membrane for aqueous organic pollutants decontamination. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 376:124631. [PMID: 39978016 DOI: 10.1016/j.jenvman.2025.124631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/31/2025] [Accepted: 02/16/2025] [Indexed: 02/22/2025]
Abstract
The electrochemical filtration process (ECFP), which integrates the benefits of membrane separation with electrochemical advanced oxidation, exhibits significant potential for water decontamination. A key aspect in realizing practical applications of ECFP lies in the development of cost-effective, high-performance reactive electrochemical membranes (REM). In this work, a novel carbon-based REM (MCM-30) was prepared by coating the low-cost coal-based carbon membrane (CM) with MnOOH nano-catalyst through a simple and environmentally friendly electrochemical deposition method. Results indicated that the nano-MnOOH catalyst significantly improved the hydrophilicity and electrochemical properties of the CM, thereby enhancing its permeability and removal efficiency towards bisphenol A (BPA). The effects of deposition time, applied voltages, flow rates, electrolyte concentrations, and water matrixes on BPA removal efficiency were systematically investigated. Under optimal conditions, 30 min deposition, 2.0 V applied voltage, 2 mL min-1 flow rate, 0.1 mol L-1 Na2SO4 electrolyte concentration, the BPA removal efficiency of the MCM-30 reached to over 95%, which is much higher than that of the CM. The improved water treatment performance of MCM-30 during the electrochemical filtration could be attributed to the enhancement in both direct and indirect oxidation owing to the nano MnOOH deposition. Furthermore, the MCM-30 is recyclable and can be applied across various water backgrounds and pollutant types.
Collapse
Affiliation(s)
- Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Chunyu Wang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Xinyu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Ruisong Xu
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, China
| | - Hong Xin
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Hang Yu
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China
| | - Lin Li
- School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China
| | - Shuaifei Zhao
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China; Deakin University, Institute for Frontier Materials, Geelong, VIC, 3216, Australia
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China.
| | - Tonghua Wang
- College of Environmental Science and Engineering, Dalian Maritime University, 1 Linghai Road, Dalian, 116026, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, Dalian, 116024, China.
| |
Collapse
|
2
|
Niu J, Yuan R, Chen H, Zhou B, Luo S. Heterogeneous catalytic ozonation for the removal of antibiotics in water: A review. ENVIRONMENTAL RESEARCH 2024; 262:119889. [PMID: 39216738 DOI: 10.1016/j.envres.2024.119889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/12/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Antibiotics with pseudo-persistence in water have been regarded as emerging pollutants, which have obvious biological toxicity even at trace levels. On account of high reactivity, heterogeneous catalytic ozonation has been widely applied to remove antibiotics. Among the heterogeneous catalysts, with well-developed pores and regulable surface defects, carbon-based materials can act as both adsorbents and catalysts. Metal cations, surface hydroxyl (-OH) groups and oxygen vacancies (OVs) serve as primary active sites in metal oxides. However, composites (perovskite, apatite, etc.) with special crystalline structure have more crystallographic planes and abundant active sites. The unsaturated bonds and aromatic rings which have dense structure of the electron cloud are more likely to be attacked by ozone (O3) directly. Sulfonamides (SAs) can be oxidized by O3 directly within a short time due to the structure of activated aromatic rings and double bonds. With the existence of catalysts, almost all antibiotics can attain fair removal effects. The presence of water matrix can greatly influence the removal rate of pollutants via changing the surface properties of catalysts, competing active sites with O3, etc. Correspondingly, the application of diverse heterogeneous catalysts was introduced in details, based on modification including metal/non-metal doping, surface modification and carrier composite. The degradation pathways of SAs, fluoroquinolones (FQNs), tetracyclines (TCs) and β-lactams were summarized founded on the functional group structures. Furthermore, the effects of water matrix (pH, coexisting ions, organics) for catalytic ozonation were also debated. It is expected to proffer advanced guidance for researchers in catalytic ozonation of antibiotics.
Collapse
Affiliation(s)
- Jiameng Niu
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rongfang Yuan
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Huilun Chen
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Beihai Zhou
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shuai Luo
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
3
|
Lu Z, Bai H, Liang L, Chen S, Yu H, Quan X. MgO-loaded tubular ceramic membrane with spatial nanoconfinement for enhanced catalytic ozonation in refractory wastewater treatment. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134842. [PMID: 38852246 DOI: 10.1016/j.jhazmat.2024.134842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Heterogeneous catalytic ozonation (HCO) enables the destruction of organic pollutants in wastewater via oxidation by powerful hydroxyl radicals (·OH). However, the availability of short-lived ·OH in aqueous bulk is low in practical treatment scenarios due to mass transfer limitations and quenching of water constituents. Herein, we overcome these challenges by loading MgO catalysts inside the pores of a tubular ceramic membrane (denoted as CCM) to confine ·OH within the nanopores and achieve efficient pollutant removal. When the pore size of the membrane was reduced from 1000 to 50 nm, the removal of ibuprofen (IBU) by CCM was increased from 49.6 % to 90.2 % due to the enhancement of ·OH enrichment in the nanospace. In addition, the CCM exhibited high catalytic activity in the presence of co-existing ions and over a wide pH range, as well as good self-cleaning ability in treating secondary wastewater. The experimental results revealed that ·OH were the dominant reactive oxygen species (ROS) in pollutant degradation, while surface hydroxyl groups were active sites for the generation of ·OH via ozone decomposition. This work provides a promising strategy to enhance the utilization of ·OH in HCO for the efficient degradation of organic pollutants in wastewater under spatial confinement.
Collapse
Affiliation(s)
- Zijie Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Haokun Bai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Lanlan Liang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Hongtao Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, PR China.
| |
Collapse
|
4
|
Zhang J, Zhou Y, Fang Y, Li Y, Guan Z, Huang Y, Xia D. Chalcopyrite functionalized ceramic membrane for micropollutants removal and membrane fouling control via peroxymonosulfate activation: The synergy of nanoconfinement effect and interface interaction. J Colloid Interface Sci 2024; 658:714-727. [PMID: 38141393 DOI: 10.1016/j.jcis.2023.12.116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
This work developed a novel chalcopyrite (CuFeS2) incorporated catalytic ceramic membrane (CFSCM), and comprehensively evaluated the oxidation-filtration efficiency and mechanism of CFSCM/peroxymonosulfate (PMS) for organics removal and membrane fouling mitigation. Results showed that PMS activation was more efficient in the confined membrane pore structure. The CFSCM50/PMS filtration achieved almost complete removal of 4-Hydroxybenzoic acid (4-HBA) under the following conditions: pH = 6.0, CPMS = 0.5 mM, and C4-HBA = 10 mg/L. Meanwhile, the membrane showed good stability after multiple uses. During the reaction, SO4•- and •OH were generated in the CFSCM50/PMS system, and SO4•- was considered to be the dominant reactive species for pollutant removal. The roles of copper, iron, and sulfur species, as well as the possible catalytic mechanism were also clarified. Besides, the CFSCM50/PMS catalytic filtration exhibited excellent antifouling properties against NOM with reduced reversible and irreversible fouling resistances. The Extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory analysis showed an increased in repulsive energy at the membrane-foulant interface in the CFSCM50/PMS system. Membrane fouling model analysis indicated that standard blocking was the dominant fouling pattern for CFSCM50/PMS filtration. Overall, this work demonstrates an efficient catalytic filtration process for foulants removal and outlines the synergy of catalytic oxidation and interface interaction.
Collapse
Affiliation(s)
- Jiajing Zhang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Yufeng Zhou
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Yuzhu Fang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Yuan Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Zeyu Guan
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| | - Yangbo Huang
- School of Environmental Engineering, Wuhan Textile University, Wuhan 430073, China; Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China.
| | - Dongsheng Xia
- Engineering Research Center for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan Textile University, Wuhan 430073, China
| |
Collapse
|
5
|
Li Y, Fu M, Zhang X, He C, Chen D, Xiong Y, Guo L, Tian S. Enhanced catalytic ozonation performance by CuO x nanoclusters/TiO 2 nanotube and an insight into the catalytic mechanism. J Colloid Interface Sci 2023; 651:589-601. [PMID: 37562301 DOI: 10.1016/j.jcis.2023.07.198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/12/2023]
Abstract
Highly reactive nanoclusters of metal oxides are extremely difficult to be synthesized due to their thermodynamic instability. For the first time, CuOx nanoclusters supported on anatase TiO2 nanotubes (NT) with many defects as anchoring sites were successfully prepared. Although the copper loading reached as high as 2.5 %, the size of CuOx nanoclusters in the sample of 2.5 %CuOx/NT were mainly around 1.0 nm. The aggregation of copper species during the calcination process was undoubtedly hampered by the anchoring effects of the abundant defects in NT support. Due to the highly exposed undercoordinated atoms of CuOx nanoclusters, the mixed valences of copper, and the strong interface interaction between CuOx nanoclusters and NT support, 2.5 %CuOx/NT-catalyzed ozonation showed the highest pseudo-first-order reaction rate constant of 8.5 × 10-2 min-1, 2.2 and 4.0 times that of NT-catalyzed ozonation and ozonation alone, respectively. Finally, the catalytic mechanism was revealed by both experiments and density functional theory calculations (DFT). The results demonstrated that the undercoordinated Cu in CuOx/NT could highly promote the adsorption of ozone with a high adsorption energy of -125.16 eV and the adsorbed ozone was activated immediately, tending to dissociate into a O2 molecule and a surface O atom. Thus, abundant reactive oxygen species, e.g., hydroxyl radical (·OH), superoxide radical (·O2-) and singlet oxygen (1O2), could be generated via chain reactions. Especially, ·OH mainly contributed to the removal of ibuprofen pollutants. This work sheds a light on the design and preparation of highly reactive nanoclusters of metal oxide catalysts for catalytic ozonation of refractory organic pollutants.
Collapse
Affiliation(s)
- Yiqing Li
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Manqin Fu
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Xiaoxia Zhang
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chun He
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China
| | - Dingsheng Chen
- Guangdong Province Engineering Laboratory for Air Pollution Control, South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environmental (MEE), Guangzhou 510655, PR China
| | - Ya Xiong
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China
| | - Liqing Guo
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China
| | - Shuanghong Tian
- School of Environmental Science & Engineering, Sun Yat-sen University, Guangzhou 510275, PR China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, PR China.
| |
Collapse
|
6
|
Chen Y, Chen R, Chang X, Yan J, Gu Y, Xi S, Sun P, Dong X. Degradation of Sodium Acetate by Catalytic Ozonation Coupled with a Mn-Functionalized Fly Ash: Reaction Parameters and Mechanism. TOXICS 2023; 11:700. [PMID: 37624205 PMCID: PMC10457793 DOI: 10.3390/toxics11080700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Supported ozone catalysts usually take alumina, activated carbon, mesoporous molecular sieve, graphene, etc. as the carrier for loading metal oxide via the impregnation method, sol-gel method and precipitation method. In this work, a Mn-modified fly ash catalyst was synthesized to reduce the consumption and high unit price of traditional catalyst carriers like alumina. As a solid waste discharged from coal-fired power plants fueled by coal, fly ash also has porous spherical fine particles with constant surface area and activity, abd is expected to be applied as the main component in the synthesis of ozone catalyst. After the pretreatment process and modification with MnOx, the obtained Mn-modified fly ash exhibited stronger specific surface area and porosity combined with considerable ozone catalytic performance. We used sodium acetate as the contaminant probe, which is difficult to directly decompose with ozone as the end product of ozone oxidation, to evaluate the performance of this Mn-modified fly. It was found that ozone molecules can be transformed to generate ·OH, ·O2- and 1O2 for the further oxidation of sodium acetate. The oxygen vacancy produced via Mn modification plays a crucial role in the adsorption and excitation of ozone. This work demonstrates that fly ash, as an industrial waste, can be synthesized as a potential industrial catalyst with stable physical and chemical properties, a simple preparation method and low costs.
Collapse
Affiliation(s)
- Yaoji Chen
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., 2159-1 Yuhangtang Road, Hangzhou 311199, China; (Y.C.)
| | - Ruifu Chen
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Xinglan Chang
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., 2159-1 Yuhangtang Road, Hangzhou 311199, China; (Y.C.)
| | - Jingying Yan
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., 2159-1 Yuhangtang Road, Hangzhou 311199, China; (Y.C.)
| | - Yajie Gu
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., 2159-1 Yuhangtang Road, Hangzhou 311199, China; (Y.C.)
| | - Shuang Xi
- Zhejiang Tiandi Environmental Protection Technology Co., Ltd., 2159-1 Yuhangtang Road, Hangzhou 311199, China; (Y.C.)
| | - Pengfei Sun
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Xiaoping Dong
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| |
Collapse
|
7
|
Wang J, Yuan S, Dai X, Dong B. Application, mechanism and prospects of Fe-based/ Fe-biochar catalysts in heterogenous ozonation process: A review. CHEMOSPHERE 2023; 319:138018. [PMID: 36731663 DOI: 10.1016/j.chemosphere.2023.138018] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
A growing number of novel organic contaminants have escalated the demands and challenges for water treatment technology. Advanced oxidation processes based on ozone have the advantage of strong oxidative capacity and higher efficiency, which have promising application prospects in the treatment of refractory organic contaminants. Biochar has attracted a lot of interest in recent years in wastewater treatment owing to its porous structure, portable preparation and outstanding stability. Moreover, iron species are widely used in catalytic ozonation owing to their magnetic polarization, vast abundance and low price. Despite a plethora of research on Fe-based catalysts in ozonation process, the heterogeneous catalytic ozonation with Fe-loaded biochar lacks a comprehensive compendium. This review intends to introduce the research progress on Fe-based catalysts and Fe-loaded biochar in heterogeneous catalytic ozonation progress, summarize and further explore the mechanisms and detection techniques of various active components in catalytic ozonation, as well as providing fresh insights for future research.
Collapse
Affiliation(s)
- Jingjing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Shijie Yuan
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China
| | - Bin Dong
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, PR China; YANGTZE Eco-Environment Engineering Research Center, China Three Gorges Corporation, Beijing, 100038, PR China; Shanghai Investigation Design & Research Institute Co. Ltd, Shanghai, 200335, PR China.
| |
Collapse
|
8
|
Pan Z, Xin H, Xu R, Wang P, Fan X, Song Y, Song C, Wang T. Carbon electrochemical membrane functionalized with flower cluster-like FeOOH catalyst for organic pollutants decontamination. J Colloid Interface Sci 2023; 640:588-599. [PMID: 36878076 DOI: 10.1016/j.jcis.2023.02.135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 03/06/2023]
Abstract
Decorating active catalysts on the reactive electrochemical membrane (REM) is an effective way to further improve its decontamination performance. In this work, a novel carbon electrochemical membrane (FCM-30) was prepared through coating FeOOH nano catalyst on a low-cost coal-based carbon membrane (CM) through facile and green electrochemical deposition. Structural characterizations demonstrated that the FeOOH catalyst was successfully coated on CM, and it grew into a flower cluster-like morphology with abundant active sites when the deposition time was 30 min. The nano FeOOH flower clusters can obviously boost the hydrophilicity and electrochemical performance of FCM-30, which enhance its permeability and bisphenol A (BPA) removal efficiency during the electrochemical treatment. Effects of applied voltages, flow rates, electrolyte concentrations and water matrixes on BPA removal efficiency were investigated systematically. Under the operation condition of 2.0 V applied voltage and 2.0 mL·min-1 flow rate, FCM-30 can achieve the high removal efficiency of 93.24% and 82.71% for BPA and chemical oxygen demand (COD) (71.01% and 54.89% for CM), respectively, with only a low energy consumption (EC) of 0.41 kWh·kgCOD-1, which can be ascribed to the enhancement on OH yield and direct oxidation ability by the FeOOH catalyst. Moreover, this treatment system also exhibits good reusability and can be adopted on different water background as well as different pollutants.
Collapse
Affiliation(s)
- Zonglin Pan
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China
| | - Hong Xin
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China
| | - Ruisong Xu
- School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian 116024, China.
| | - Pengcheng Wang
- Department of Mechanical Engineering, University of Houston, Houston, TX 77204, USA
| | - Xinfei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China
| | - Yongxin Song
- Department of Marine Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China
| | - Chengwen Song
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China.
| | - Tonghua Wang
- College of Environmental Science and Engineering, Dalian Maritime University, 1, Linghai Road, Dalian 116026, China; School of Chemical Engineering, Dalian University of Technology, 2, Linggong Road, Dalian 116024, China.
| |
Collapse
|
9
|
Chen W, He H, Liang J, Wei X, Li X, Wang J, Li L. A comprehensive review on metal based active sites and their interaction with O 3 during heterogeneous catalytic ozonation process: Types, regulation and authentication. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130302. [PMID: 36347142 DOI: 10.1016/j.jhazmat.2022.130302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/30/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Heterogeneous catalytic ozonation (HCO) was a promising water purification technology. Designing novel metal-based catalysts and exploring their structural-activity relationship continued to be a hot topic in HCO. Herein, we reviewed the recent development of metal-based catalysts (including monometallic and polymetallic catalysts) in HCO. Regulation of metal based active sites (surface hydroxyl groups, Lewis acid sites, metal redox cycle and surface defect) and their key roles in activating O3 were explored. Advantage and disadvantage of conventional characterization techniques on monitoring metal active sites were claimed. In situ electrochemical characterization and DFT simulation were recommended as supplement to reveal the metal active species. Though the ambiguous interfacial behaviors of O3 at these active sites, the existence of interfacial electron migration was beyond doubt. The reported metal-based catalysts mainly served as electron donator for O3, which resulted in the accumulation of oxidized metal and reduced their activity. Design of polymetallic catalysts could accelerate the interfacial electron migration, but they still faced with the dilemma of sluggish Me(n+m)+/Men+ redox cycle. Alternative strategies like coupling active metal species with mesoporous silicon materials, regulating surface hydrophobic/hydrophilic properties, polaring surface electron distribution, coupling HCO process with photocatalysis and H2O2 were proposed for future research.
Collapse
Affiliation(s)
- Weirui Chen
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hengxi He
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Jiantao Liang
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Xipeng Wei
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Xukai Li
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China.
| | - Jing Wang
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China
| | - Laisheng Li
- School of Environment, South China Normal University, Guangdong Provincial Engineering Technology Research Center for Drinking Water Safety, Guangdong Provincial Key Lab of Functional Materials for Environmental Protection, Guangzhou 510006, China.
| |
Collapse
|
10
|
Yi Q, Li Z, Li J, Zhou J, Li X, Dai R, Wang X. Enhancing oxidants activation by transition metal-modified catalytic membranes for wastewater treatment. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Hou L, Wen Y, Wu J, Yue Y, Zhang J, Zhang J, Qian G. Reveal of free radicals in manganese-based catalysts and their roles during selective catalytic reduction of nitrogen oxide. J Colloid Interface Sci 2022; 628:193-204. [DOI: 10.1016/j.jcis.2022.07.093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/07/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022]
|
12
|
Gan Y, Zhu K, Xia W, Zhu S, Tong Z, Chen W, Wang Y, Lin B. Strongly coupled Fe/N co-doped graphitic carbon nanosheets/carbon nanotubes for rapid degradation of organic pollutants via peroxymonosulfate activation: Performance, mechanism and degradation pathways. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
13
|
Mitigation Mechanism of Membrane Fouling in MnFeOx Functionalized Ceramic Membrane Catalyzed Ozonation Process for Treating Natural Surface Water. SEPARATIONS 2022. [DOI: 10.3390/separations9110372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In order to efficiently remove NOMs in natural surface water and alleviate membrane pollution at the same time, a flat microfiltration ceramic membrane (CM) was modified with MnFeOX (Mn-Fe-CM), and a coagulation–precipitation–sand filtration pretreatment coupled with an in situ ozonation-ceramic membrane filtration system (Pretreatment/O3/Mn-Fe-CM) was constructed for this study. The results show that the removal rates of dissolved organic carbon (DOC), specific ultraviolet absorption (SUVA) and NH4+-N by the Pretreatment/O3/Mn-Fe-CM system were 51.1%, 67.9% and 65.71%, respectively. Macromolecular organic compounds such as aromatic proteins and soluble microbial products (SMPs) were also effectively removed. The working time of the membrane was about twice that in the Pretreatment/CM system without the in situ ozone oxidation, which was measured by the change in transmembrane pressure, proving that membrane fouling was significantly reduced. Finally, based on the SEM, AFM and other characterization results, it was concluded that the main mitigation mechanisms of membrane fouling in the Pretreatment/O3/Mn-Fe-CM system was as follows: (1) pretreatment could remove part of DOC and SUVA to reduce their subsequent entrapment on a membrane surface; (2) a certain amount of shear force generated by O3 aeration can reduce the adhesion of pollutants; (3) the loaded MnFeOX with a higher catalytic ability produced a smoother active layer on the surface of the ceramic membrane, which was conducive in reducing the contact among Mn-Fe-CM, O3 and pollutants, thus increasing the proportion of reversible pollution and further reducing the adhesion of pollutants; (4) Mn-Fe-CM catalyzed O3 to produce ·OH to degrade the pollutants adsorbed on the membrane surface into smaller molecular organic matter, which enabled them pass through the membrane pores, reducing their accumulation on the membrane surface.
Collapse
|
14
|
Ye X, Li Y, Zhang Y, Wang P, Hu D. Superhydrophobic Polyurethane Membrane with a Biomimetically Hierarchical Structure for Self-Cleaning. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49274-49283. [PMID: 36259519 DOI: 10.1021/acsami.2c13208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this study, a stable and durable hexadecyltrimethoxysilane (HDTMS)/thermoplastic polyurethane (TPU) superhydrophobic film is successfully prepared by a simple and low-cost two-step method, namely, carrying out biomimetically hierarchical structures and low surface energy material modification concurrently. Meanwhile, effective parameters affecting the water contact angle (WCA) are studied and optimized. More importantly, under optimum parameters, the maximum WCA is 165°, the minimum slide angle (SA) is 3°, and the adhesion force is 13 μN, showing good self-cleaning performance. Besides, considerable mechanical stability to withstand 4000 tension or 5000 compression cycles, breathability, and moisture penetrability, as well as chemical resistance with sustained superhydrophobic properties in various harsh environments, are presented.
Collapse
Affiliation(s)
- Xu Ye
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China
| | - Yuanyuan Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China
| | - Yan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China
| | - Ping Wang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou 215127, China
| | - Dongmei Hu
- Key Laboratory of Multifunctional and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
| |
Collapse
|
15
|
Yuan R, Qin Y, He C, Wang Z, Bai L, Zhao H, Jiang Z, Meng L, He X. Fe-Mn-Cu-Ce/Al2O3 as an efficient catalyst for catalytic ozonation of bio-treated coking wastewater: Characteristics, efficiency, and mechanism. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Song Z, Li Y, Wang Z, Sun J, Xu X, Huangfu Z, Li C, Zhang Y, Xu B, Qi F, Ikhlaq A, Kumirska J, Siedlecka EM. Interfacial reactions of catalytic ozone membranes resulting in the release and degradation of irreversible foulants. WATER RESEARCH 2022; 226:119244. [PMID: 36270143 DOI: 10.1016/j.watres.2022.119244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 08/24/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
An efficient in-situ self-cleaning catalytic ceramic-membrane tailored with MnO2-Co3O4 nanoparticles (Mn-Co-CM) was fabricated. Density functional theory calculations result substantiated that molecular ozone could be effectively adsorbed by oxygen vacancies (OV) on the Mn-Co-CM surface and then direct activated into a surface-bound atomic oxygen (*Oad) and a peroxide (*O2, ad), ultimately producing ·OH. Mn-Co-CM coupling with ozone efficiently removed foulants from the permeate and the membrane surface simultaneously and leading to in-situ formation of ·OH that changed the nature of the irreversible foulants and ultimately resulted in the rapid release and degradation of humic acid-like substances causing irreversible fouling. However, the commercial CM with ozone mainly removed cake layer fouling including protein-like and fulvic acid-like substances, followed by the slow release and degradation of irreversible foulant, resulting in many humic acid-like substances remain on the membrane surface as irreversible fouling. Based on these, the flux growth rate of Mn-Co-CM was 3.5 times higher than that of CM with ozone. This study provides new insights into the mechanism of in-situ membrane fouling mitigation, when using an efficient catalytic ceramic-membrane. This will facilitate the development of membrane antifouling strategies.
Collapse
Affiliation(s)
- Zilong Song
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Yanning Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Zhenbei Wang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Jingyi Sun
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Xiaotong Xu
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zizheng Huangfu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Chen Li
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Yuting Zhang
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China
| | - Bingbing Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, PR China
| | - Fei Qi
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, PR China.
| | - Amir Ikhlaq
- Institute of Environment Engineering and Research, University of Engineering and Technology, GT Road, Lahore, Punjab 54890, Pakistan
| | - Jolanta Kumirska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Poland
| | - Ewa Maria Siedlecka
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdansk, Wita Stwosza 63, 80-308, Poland
| |
Collapse
|