1
|
Pradyasti A, Lee MJ, Kim HJ, Kim MH. Carboxymethyl cellulose/alginate/chitosan-based polyelectrolyte complex hydrogel with irregularly shaped multi-metallic nanowires for efficient continuous-flow Cr(VI) remediation. Int J Biol Macromol 2025; 309:142863. [PMID: 40188915 DOI: 10.1016/j.ijbiomac.2025.142863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/28/2025] [Accepted: 04/03/2025] [Indexed: 05/10/2025]
Abstract
The efficient removal of hexavalent chromium (Cr(VI)) from industrial wastewater is a pressing environmental challenge. A natural polyelectrolyte complex (PEC) hydrogel composed of carboxymethyl cellulose, alginate and chitosan, was developed to support Pd/Au/Ag/Pt nanowires for the continuous-flow catalytic reduction of Cr(VI) to the less toxic Cr(III). PEC hydrogels are formed through the association of oppositely charged polyelectrolytes, a process that is primarily driven by entropy gain due to the release of counterions, resulting in highly porous networks with tunable physical and chemical properties. These characteristics make them ideal platforms for nanoparticle stabilization and catalytic applications. Crosslinking with glutaraldehyde, citric acid and calcium ions further improved the stability and porosity of the hydrogels. Pd/Au/Ag/Pt nanowires, synthesised through galvanic replacement and co-reduction of Pd/Au/Ag nanowires formed via an oriented attachment mechanism, exhibit a distinctive, irregular, undulating morphology that enhances their suitability for introduction into hydrogel matrices. These multi-metallic nanowires achieved complete Cr(VI) reduction within 15 min. When incorporated into a nanocomposite hydrogel, the Pd/Au/Ag/Pt nanowires significantly enhanced catalytic activity while maintaining structural integrity and high catalytic efficiency. Notably, the system achieved complete Cr(VI) reduction within 5 h of continuous-flow operation, highlighting its potential as a robust and scalable solution for industrial wastewater remediation.
Collapse
Affiliation(s)
- Astrini Pradyasti
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Myeong Joo Lee
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Hyeon Jeong Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea
| | - Mun Ho Kim
- Department of Polymer Engineering, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan 48513, Republic of Korea.
| |
Collapse
|
2
|
Li J, Li L, Brink HA, Allegri G, Lindhoud S. Polyelectrolyte complex-based materials for separations: progress, challenges and opportunities. MATERIALS HORIZONS 2025. [PMID: 40237352 DOI: 10.1039/d4mh01840k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Polyelectrolyte complex (PEC) based materials could provide a sustainable alternative to conventional materials, especially for separation applications. However, reproducible production remains a challenge due to the many parameters influencing the polyelectrolyte complexation process, eventually affecting the properties and performance of the final material. Here, we provide an overview of how different parameters affect polyelectrolyte complexation and discuss promising PEC-based materials for separation applications, i.e., porous membranes, functional and barrier coatings, adhesives, saloplastics, and extraction media. Additionally, we highlight the challenges and opportunities and discuss what is needed to get to the next level. We envision that collaboration between experimentalists and theoreticians can leverage experimental datasets with accurate descriptions of all the parameters for multiscale modelling, machine learning and artificial intelligence approaches that can be used to design PEC materials and predict their properties.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Molecules and Materials, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Lijie Li
- Department of Molecules and Materials, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
- Department of Membrane Science and Technology, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Hestie A Brink
- Department of Membrane Science and Technology, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| | - Giulia Allegri
- Department of Molecules and Materials, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| | - Saskia Lindhoud
- Department of Molecules and Materials, Faculty of Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
3
|
Hung SHJ, Chiang MC, Schiffman JD. Optimization of Polyelectrolyte Coacervate Membranes via Aqueous Phase Separation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1361-1373. [PMID: 39698755 DOI: 10.1021/acsami.4c18989] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
Polymeric membranes fabricated via the nonsolvent-induced phase separation process rely heavily on toxic aprotic organic solvents, like N-methyl-pyrrolidine (NMP) and dimethylformamide. We suggest that the "saloplastic" nature of polyelectrolyte complexes (PECs) makes them an excellent candidate for fabricating next-generation water purification membranes that use a more sustainable aqueous phase separation process. In this study, we investigate how the properties of PECs and their interactions with salt can form pore-containing membranes from the strong polyelectrolytes poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) in the presence of potassium bromide (KBr). How the single-phase polymer-rich (coacervate) dope solution and coagulation bath impacted the formation, morphology, and pure water permeance (PWP) of the membranes was systematically evaluated by using scanning electron microscopy and dead-end filtration tests. The impact of a salt annealing post-treatment process was also tested; these treated PEC membranes exhibited a PWP of 6.2 L m-2 h-1 bar-1 and a dye removal of 91.7% and 80.5% for methyl orange and methylene blue, respectively, which are on par with commercial poly(ether sulfone) nanofiltration membranes. For the first time, we have demonstrated the ability of the PEC membranes to repel Escherichia coli bacteria under static conditions. Our fundamental study of polyelectrolyte membrane pore-forming mechanisms and separation performance could help drive the future development of sustainable materials for membrane-based separations.
Collapse
Affiliation(s)
- Shao-Hsiang Joe Hung
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Meng-Chen Chiang
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| | - Jessica D Schiffman
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, Massachusetts 01003-9303, United States
| |
Collapse
|
4
|
Li J, Li L, Lindhoud S. Achieving lysozyme functionalization in PDADMAC-NaPSS saloplastics through salt annealing. RSC Adv 2024; 14:32863-32875. [PMID: 39429930 PMCID: PMC11487472 DOI: 10.1039/d4ra04986a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024] Open
Abstract
Hot-pressed saloplastics are dense and transparent polyelectrolyte complex materials governed by ionic crosslinking. Such plastics have several advantages, for example, salt water processibility and recyclability. Here, we demonstrate a simple but effective post-treatment method to incorporate lysozyme as a biocatalytic component into the hot-pressed saloplastics. Changes in salt concentration can be used for annealing and curing the saloplastics, where the temporary opening allows for lysozyme loading. This process was carefully examined by two different routes and the salt concentrations and incubation times were varied systematically. Optimised saloplastics showed an enzymatic activity against Micrococcus lysodeikticus of 4.44 ± 0.37 U cm-2 and remained partially active (∼72% activity preserved) after 7 days. This approach opens new routes to incorporate enzymes or other biological functionality into saloplastics which is difficult to achieve for conventional plastics.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology P. O. Box 217 7500 AE Enschede The Netherlands
| | - Lijie Li
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology P. O. Box 217 7500 AE Enschede The Netherlands
| | - Saskia Lindhoud
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, Faculty of Science and Technology P. O. Box 217 7500 AE Enschede The Netherlands
| |
Collapse
|
5
|
Li L, Baig MI, de Vos WM, Lindhoud S. Biocatalytic PEI-PSS membranes through aqueous phase separation: influence of casting solution pH and operational temperature. SOFT MATTER 2024; 20:5425-5434. [PMID: 38946525 DOI: 10.1039/d4sm00311j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Biocatalytic membranes combine the separation properties of membranes and the catalytic abilities of enzymes, holding great promise for industries where both purification and conversion are required. In this work, polyelectrolyte complex membranes incorporated with lysozyme were prepared using polyethyleneimine (PEI) and poly(sodium 4-styrenesulfonate) (PSS) through a one-step and mild pH shift aqueous phase separation (APS) approach. The effects of lysozyme addition and casting solution pH on the membrane properties were studied. All the membranes, both with and without added lysozyme, exhibited asymmetric structures with relatively dense top surfaces and porous cross-sections with finger-like macrovoids. The incorporation of lysozyme did not significantly influence the structure and permeability of the formed membranes. The PEI-PSS biocatalytic membranes exhibited temperature dependent enzymatic activity. The activity strongly increased with increased operational temperature, with the highest activity of 4.30 ± 0.15 U cm-2 at 45 °C. This indicates a responsive effect, where a higher temperature leads to some swelling of the polyelectrolyte complex membrane, making the enzyme more accessible to the used substrate. Moreover, the biocatalytic membranes demonstrate desirable enzymatic stability, maintaining 60% activity even after 60 days of storage. This study validates the potential of the water-based APS process as a straightforward approach for integrating enzymes into responsive biocatalytic membranes.
Collapse
Affiliation(s)
- Lijie Li
- Faculty of Science and Technology, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands.
- Department of Membrane Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Muhammad Irshad Baig
- Department of Membrane Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Wiebe M de Vos
- Department of Membrane Science and Technology, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands
| | - Saskia Lindhoud
- Faculty of Science and Technology, Department of Molecules & Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede 7500 AE, The Netherlands.
| |
Collapse
|
6
|
Zairov RR, Dovzhenko AP, Podyachev SN, Sudakova SN, Kornev TA, Shvedova AE, Masliy AN, Syakaev VV, Alekseev IS, Vatsouro IM, Mambetova GS, Lapaev DV, Nizameev IR, Enrichi F, Kuznetsov AM, Kovalev VV, Mustafina AR. Role of PSS-based assemblies in stabilization of Eu and Sm luminescent complexes and their thermoresponsive luminescence. Colloids Surf B Biointerfaces 2022; 217:112664. [PMID: 35780611 DOI: 10.1016/j.colsurfb.2022.112664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 01/09/2023]
Abstract
The present work introduces self-assembled polystyrenesulfonate (PSS) molecules as soft nanocapsules for incorporation of Eu3+-Sm3+ complexes by the solvent exchange procedure. The high levels of Eu3+- and Sm3+-luminescence of the complexes derives from the ligand-to-metal energy transfer, in turn, resulted from the complex formation of Eu3+and Sm3+ ions with the three recently synthesized cyclophanic 1,3-diketones. The structural features of the ligands are optimized for the high thermal sensitivity of Eu3+- luminescence in DMF solutions. The PSS-nanocapsules (∼100 nm) provide both colloid and chemical stabilization of the ultrasmall (3-5 nm) nanoprecipitates of the complexes, although their luminescence spectra patterns and excited state lifetimes differ from the values measured for the complexes in DMF solutions. The specific concentration ratio of the Eu3+-Sm3+ complexes in the DMF solutions allows to tune the intensity ratio of the luminescence bands at 612 and 650 nm in the heterometallic Eu3+-Sm3+ colloids. The thermal sensitivity of the Eu3+- and Sm3+-luminescence of the complexes derives from the static quenching both in PSS-colloids and in DMF solutions, while the thermo-induced dynamic quenching of the luminescence is significant only in DMF solutions. The reversibility of thermo-induced luminescence changes of the Eu3+-Sm3+ colloids is demonstrated by six heating-cooling cycles. The DLS measurements before and after the six cycles reveal the invariance of the PSS-based capsule as the prerequisite for the recyclability of the temperature monitoring through the ratio of Eu3+-to- Sm3+ luminescence.
Collapse
Affiliation(s)
- Rustem R Zairov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation.
| | - Alexey P Dovzhenko
- Kazan (Volga region) Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russian Federation; Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Sergey N Podyachev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation; Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Svetlana N Sudakova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation
| | - Timur A Kornev
- Kazan (Volga region) Federal University, Kremlyovskaya str., 18, 420008 Kazan, Russian Federation; Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Anastasiya E Shvedova
- Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Russian Federation
| | - Alexey N Masliy
- Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Russian Federation
| | - Victor V Syakaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation
| | - Ivan S Alekseev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Ivan M Vatsouro
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Gulnaz Sh Mambetova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation; Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Dmitry V Lapaev
- Zavoisky Physical-Technical Institute, FRC Kazan Scientific Center of RAS, Sibirsky tract, 10/7, 420029 Kazan, Russian Federation
| | - Irek R Nizameev
- Kazan National Research Technical University, A.N. Tupolev - KAI, 10, K. Marx str., Kazan 420111, Russian Federation
| | - Francesco Enrichi
- Department of Computer Science, University of Verona, Strada Le Grazie 15, 37134 Verona, Italy; CNR-ISP, Institute of Polar Science of the National Research Council, via Torino 155, 30174 Mestre-Venezia, Italy
| | - Andrey M Kuznetsov
- Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Russian Federation
| | - Vladimir V Kovalev
- Department of Chemistry, M. V. Lomonosov Moscow State University, Lenin's Hills1, 119991 Moscow, Russian Federation
| | - Asiya R Mustafina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, 420088 Kazan, Russian Federation
| |
Collapse
|