1
|
Nguyen DNT, Waldmann L, Ravaine V, Nicolai T, Benyahia L. Interaction between stabilized droplets of different phases in the same continuous phase of an aqueous three-phase system. SOFT MATTER 2024; 20:3359-3366. [PMID: 38563361 DOI: 10.1039/d3sm01688a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Water-in-water (W/W) emulsions, also called aqueous two-phase systems, are formed by mixing two incompatible polymers in water that phase separate into two distinct phases. They can be stabilized by addition of colloidal particles. Droplets of the dispersed phase can be used to compartmentalize ingredients and induce localized reactions. By mixing more types of incompatible polymers, emulsions containing droplets of different phases can be formed that can potentially capture different ingredients. Here the interaction between dispersed droplets of different types was studied by gently mixing a W/W emulsion containing droplets rich in dextran (DEX) dispersed in a continuous phase rich in polyethylene oxide with an emulsion containing droplets rich in fish gelatin (GEL) dispersed in the same continuous medium. Bis-hydrophilic microgels (MG) consisting of DEX grafted with poly(N-isopropylacrylamide) were added and their effect on the stability of each binary emulsion was investigated. Interestingly, when two very stable emulsions were gently mixed, droplets of different types were observed with confocal scanning laser microscopy to coalesce immediately upon contact. In this manner, Janus-type droplets were formed containing a DEX and a GEL compartment with no MG at the GEL/DEX interface that further associated into strings of alternating droplets. Contact angles between the different phases in emulsions with and without MG were compared and used to determine the effect of the microgels on the interfacial tension between the phases.
Collapse
Affiliation(s)
- Do-Nhu-Trang Nguyen
- IMMM, UMR 6283 CNRS - Le Mans University, Avenue Olivier Messiaen, Le Mans 72085 cedex 9, France.
| | - Léa Waldmann
- Bordeaux INP, ISM, UMR 5255 CNRS -, Univ. Bordeaux, F-33400, Talence, France
| | - Valérie Ravaine
- Bordeaux INP, ISM, UMR 5255 CNRS -, Univ. Bordeaux, F-33400, Talence, France
| | - Taco Nicolai
- IMMM, UMR 6283 CNRS - Le Mans University, Avenue Olivier Messiaen, Le Mans 72085 cedex 9, France.
| | - Lazhar Benyahia
- IMMM, UMR 6283 CNRS - Le Mans University, Avenue Olivier Messiaen, Le Mans 72085 cedex 9, France.
| |
Collapse
|
2
|
Ben Messaoud G, Stefanopoulou E, Wachendörfer M, Aveic S, Fischer H, Richtering W. Structuring gelatin methacryloyl - dextran hydrogels and microgels under shear. SOFT MATTER 2024; 20:773-787. [PMID: 38165831 DOI: 10.1039/d3sm01365k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Gelatin methacryloyl (GelMA) is a widely used semi-synthetic polymer for a variety of bioapplications. However, the development of versatile GelMA hydrogels requires tuning of their microstructure. Herein, we report the possibility of preparing hydrogels with various microstructures under shear from an aqueous two-phase system (ATPS) consisting of GelMA and dextran. The influence of an applied preshear on dextran/GelMA droplets and bicontinuous systems is investigated by rheology that allows the application of a constant shear and is immediately followed by in situ UV-curing of the GelMA-rich phase. The microstructure of the resulting hydrogels is examined by confocal laser scanning microscopy (CLSM). The results show that the GelMA string phase and GelMA hydrogels with aligned bands can be formed depending on the concentration of dextran and the applied preshear. The influence of the pH of the ATPS is investigated and demonstrates the formation of multiple emulsions upon decreasing the charge density of GelMA. The preshearing of multiple emulsions, following gelation, leads to the formation of porous GelMA microgels. The diversity of the formed structures highlights the application potential of preshearing ATPS in the development of functional soft materials.
Collapse
Affiliation(s)
- Ghazi Ben Messaoud
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Evdokia Stefanopoulou
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| | - Mattis Wachendörfer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Sanja Aveic
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52074 Aachen, Germany.
- DWI-Leibniz Institute for Interactive Materials, Forckenbeckstrasse 50, 52074 Aachen, Germany
| |
Collapse
|
3
|
Wu J, Liu S, Ma X, Zhang C, Feng C, Wang L, Han J, Wang Y. Temperature-Sensitive Janus Particles PEG/SiO 2/PNIPAM-PEA: Applications in Foam Stabilization and Defoaming. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1774-1784. [PMID: 38194298 DOI: 10.1021/acs.langmuir.3c03026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The current study presents a scalable approach for the preparation of temperature-responsive PEG/SiO2/PNIPAM-PEA Janus particles and, for the first time, investigates their potential applications in stabilizing foam and defoaming by adjusting the temperature. The method utilizes a (W1 + O)/W2 emulsion system, which incorporates appropriate surfactants to stabilize the emulsion and prevent rapid dissolution of the hydrophilic triblock polymer PEG-b-PTEPM-b-PNIPAM in water. The PEG/SiO2/PNIPAM-PEA Janus particles with temperature-responsive characteristics were synthesized in a single step that combined the sol-gel reaction and photoinduced free radical polymerization. The contact angle of the hydrophilic PEG/SiO2/PNIPAM surface was measured to be 54.7 ± 0.1°, while the contact angle of the hydrophobic PEA surface was found to be 122.4 ± 0.1°. By incorporating PEG/SiO2/PNIPAM-PEA Janus particles at a temperature of 25 °C, the foam's half-life is significantly prolonged from 42 s to nearly 30 min. However, with an increase in temperature to 50 °C, the foam's half-life rapidly diminished to only 44 s. This innovative application effectively enhances foam stabilization at low temperatures and facilitates the rapid dissipation of foam at high temperatures.
Collapse
Affiliation(s)
- Jiacong Wu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shiyuan Liu
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinnan Ma
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cailiang Zhang
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Chengxiang Feng
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Lei Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Juan Han
- College of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yun Wang
- College of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
4
|
Zhang Z, He X, Zeng C, Li Q, Xia H. Preparation of cassava starch-gelatin yolk-shell microspheres by water-in-water emulsion method. Carbohydr Polym 2024; 323:121461. [PMID: 37940319 DOI: 10.1016/j.carbpol.2023.121461] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023]
Abstract
This paper reports the preparation and characterization of gelatin-cassava starch microspheres using the water-in-water emulsion technique. The effects of different weight ratios (10: 0, 9: 1, 8: 2, 7: 3, 6: 4, 5: 5) of starch to gelatin on the morphology, structure, thermal properties, and stability of microspheres were investigated. The morphology results showed that most microspheres had spherical shapes and smooth surfaces. When the weight ratio of starch to gelatin was 5: 5, the prepared microspheres formed a stable yolk-shell structure. The swelling capacity of the microspheres increased with the proportion of gelatin, up to 682.3 %. The gelatin and starch in the microspheres were compatible but not miscible. Compared with the native starch, the crystalline structure of microspheres changed from A-type to a mixture of B-type and V-type, and the relative crystallinity decreased. Differential scanning calorimetry results showed that the melting of microspheres involved both gelatin dissolution and starch gelatinization. Due to the formation of composite microspheres, the starch content decreased, and the release of reducing sugars from the microspheres upon hydrolysis was reduced. The gelatin-cassava starch microspheres are simple to prepare, biocompatible, and can be used as a potential material for microencapsulation.
Collapse
Affiliation(s)
- Zhirenyong Zhang
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Xiaoxue He
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Chaoxi Zeng
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China
| | - Qingming Li
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| | - Huiping Xia
- School of Food Science and Technology, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China; Hunan Rapeseed Oil Nutrition Health and Deep Development Engineering Technology Research Center, Hunan Agricultural University, No. 1 Nongda Road, Furong District, Changsha, Hunan 410128, China.
| |
Collapse
|
5
|
Chen J, Guo J, Yang X, Nicolai T. Effect of adding gelatin on the stability of water in water emulsions formed by mixtures of amylopectin and guar gum. Colloids Surf B Biointerfaces 2023; 232:113593. [PMID: 37862946 DOI: 10.1016/j.colsurfb.2023.113593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/27/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Stable water in water (W/W) emulsions of guar rich droplets dispersed in an amylopectin rich continuous phase (G/A) and the inverse (A/G) can be achieved by adding gelatin and inducing microphase separation of the latter by cooling. In this research, the effect of gelatin on the emulsion stability was further studied by storing the emulsions at 10, 20 and 25 °C. The visual aspect, the microstructure, and the viscosity of the emulsions were investigated at different times during storage at different temperatures and pH. It was found that depending on the conditions, the gelatin phase wetted the interface or formed small discrete microdomains that adsorbed at the interface and dispersed in the bulk phases. The observed differences in morphology and stability are related to the interplay of the rates of aggregation, phase separation of gelatin, which itself depend on the gelatin concentration, temperature and pH. Emulsions could be prepared in this manner that were stable for at least one week and remained visually homogeneous. We believe that this is a promising method to stabilize W/W emulsions as long as the components of the emulsion are incompatible with aggregated gelatin.
Collapse
Affiliation(s)
- Jiafeng Chen
- Dining and Tourism Academy, Guangdong Polytechnic of Science and Trade, Guangzhou 510006, Guangdong, PR China; Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, South China University of Technology, Guangzhou 510640, PR China; Le Mans Université, IMMM UMR-CNRS 6283, 72085 CEDEX 9 Le Mans, France.
| | - Jian Guo
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, South China University of Technology, Guangzhou 510640, PR China
| | - Xiaoquan Yang
- Protein Research and Development Center, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, National Engineering Laboratory of Wheat & Corn Further Processing, South China University of Technology, Guangzhou 510640, PR China
| | - Taco Nicolai
- Le Mans Université, IMMM UMR-CNRS 6283, 72085 CEDEX 9 Le Mans, France.
| |
Collapse
|
6
|
Yan S, Regenstein JM, Zhang S, Huang Y, Qi B, Li Y. Edible particle-stabilized water-in-water emulsions: Stabilization mechanisms, particle types, interfacial design, and practical applications. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
7
|
Meng Y, Nicolai T. The effect of the contact angle on particle stabilization and bridging in water-in-water emulsions. J Colloid Interface Sci 2023; 638:506-512. [PMID: 36764244 DOI: 10.1016/j.jcis.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/07/2023]
Abstract
HYPOTHESIS Water-in-water (W/W) emulsions formed by mixing incompatible polymers in aqueous solution can in some cases be stabilized by adding particles that adsorb spontaneously at the W/W interface. The importance of the contact angle of the particles with the interface on the stability of W/W emulsions is still an outstanding issue. We hypothesize that if the contact angle with the continuous phase is smaller than 90°, particles can bridge dispersed droplets, which enhances the stability of the emulsion. EXPERIMENTS The W/W emulsions consisted of a dispersed poly(ethylene oxide) (PEO) phase in a continuous dextran phase or vice versa. Gelatin microgels were added and their contact angle was varied by varying the pH. The morphology during aging was observed by microscopy. FINDINGS The contact angle of the microgels with the PEO phase varied between 110° close to neutral pH and 0° at pH 3 and pH 11. The W/W emulsions were stable only when the contact angle with the continuous phase was smaller than 90°. In this case, microgels could form bridges between dispersed droplets creating a network of droplets.
Collapse
Affiliation(s)
- Yuwen Meng
- Le Mans Université, IMMM UMR-CNRS 6283, 72085, cedex 9, Le Mans, France.
| | - Taco Nicolai
- Le Mans Université, IMMM UMR-CNRS 6283, 72085, cedex 9, Le Mans, France.
| |
Collapse
|
8
|
Meng Y, Gantier M, Nguyen TH, Nicolai T, Nicol E. Poly(ethylene oxide)/Gelatin-Based Biphasic Photocrosslinkable Hydrogels of Tunable Morphology for Hepatic Progenitor Cell Encapsulation. Biomacromolecules 2023; 24:789-796. [PMID: 36655630 DOI: 10.1021/acs.biomac.2c01250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Macroporous hydrogels have great potential for biomedical applications. Liquid or gel-like pores were created in a photopolymerizable hydrogel by forming water-in-water emulsions upon mixing aqueous solutions of gelatin and a poly(ethylene oxide) (PEO)-based triblock copolymer. The copolymer constituted the continuous matrix, which dominated the mechanical properties of the hydrogel once photopolymerized. The gelatin constituted the dispersed phase, which created macropores in the hydrogel. The microstructures of the porous hydrogel were determined by the volume fraction of the gelatin phase. When volume fractions were close to 50 v%, free-standing hydrogels with interpenetrated morphology can be obtained thanks to the addition of a small amount of xanthan. The hydrogels displayed Young's moduli ranging from 5 to 30 kPa. They have been found to be non-swellable and non-degradable in physiological conditions. Preliminary viability tests with hepatic progenitor cells embedded in monophasic PEO-based hydrogels showed rapid mortality of the cells, whereas encouraging viability was observed in PEO-based triblock copolymer/gelatin macroporous hydrogels. The latter has the potential to be used in cell therapy.
Collapse
Affiliation(s)
- Yuwen Meng
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| | - Malika Gantier
- GoLiver Therapeutics, IRSUN, 8 quai Moncousu - BP 70721, Nantes Cedex 44007, France.,Center for Research in Transplantation and Translational Immunology, UMR 1064, INSERM, Nantes Université, NantesF-44000, France
| | - Tuan Huy Nguyen
- GoLiver Therapeutics, IRSUN, 8 quai Moncousu - BP 70721, Nantes Cedex 44007, France
| | - Taco Nicolai
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| | - Erwan Nicol
- IMMM, UMR-CNRS 6283, Le Mans Université, Le Mans Cedex 9 72085, France
| |
Collapse
|
9
|
Esquena J. Recent advances on water-in-water emulsions in segregative systems of two water-soluble polymers. Curr Opin Food Sci 2023. [DOI: 10.1016/j.cofs.2023.101010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
10
|
Stable protein microcapsules by crosslinking protein particles in water in water emulsions. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Ma C, Li J, Wang J, Bian D, Zhao Y. Self‐healing corrosion‐resistant coatings based on fluorinated alkyl silane microcapsules. POLYM ENG SCI 2022. [DOI: 10.1002/pen.26176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Conghuan Ma
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology Jiangnan University Wuxi Jiangsu China
- School of Mechanical Engineering Jiangnan University Wuxi Jiangsu China
| | - Jiahong Li
- School of Mechanical Engineering Jiangnan University Wuxi Jiangsu China
| | - Jianyu Wang
- School of Mechanical Engineering Jiangnan University Wuxi Jiangsu China
| | - Da Bian
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology Jiangnan University Wuxi Jiangsu China
- School of Mechanical Engineering Jiangnan University Wuxi Jiangsu China
| | - Yongwu Zhao
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology Jiangnan University Wuxi Jiangsu China
- School of Mechanical Engineering Jiangnan University Wuxi Jiangsu China
| |
Collapse
|
12
|
Hua Z, Man J, Liu G, Li J, Zhou C, Xia H, Li J. Complex Suspended Janus Droplets Constructed through Solvent Evaporation-Induced Phase Separation at the Air-Liquid Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:10994-11002. [PMID: 36048165 DOI: 10.1021/acs.langmuir.2c01460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phase separation technology has attracted extensive scientific interest because of its intriguing structure changes during the phase separation process. Phase separation inside emulsion droplets in continuous surroundings has been well studied in recent years. Many investigations have also been conducted to study the droplet phase separation phenomena in noncontinuous surroundings. However, studies on the phase separation phenomena and the spreading behavior of suspended droplets at the air-liquid interface were rarely reported. In this study, PEGDA-glycerol suspended Janus droplets with a patchy structure were produced by utilizing solvent evaporation-induced droplet phase separation at the air-liquid interface. By altering the glycerol/PEGDA volume ratio, the initial proportion of ethanol, and the concentration of surfactants, suspended droplets with different morphologies can be achieved, which include filbert-shaped droplets (FSDs), half lotus seedpod single-phase Janus droplets (HLSDs), lotus seedpod single-phase Janus droplets (LSDs), lotus seedpod-shaped droplets (LSSDs), multiple-bulge droplets (MBDs), and half gourd-shaped droplets (HGSDs). A patchy structure was generated at the air-droplet interface, which was attributed to the Marangoni stresses induced by nonuniform evaporation. Furthermore, a modified spreading coefficient theory was constructed and verified to illustrate the phase separation at the air-droplet interface, which was the first research to predict the phase separation phenomena at the air-liquid interface via spreading coefficients theory. Moreover, we studied the factors that led to the droplets being able to float by designing the combined parameters, including three interfacial tensions and the equilibrium contact angles. Therefore, a simple and versatile strategy for creating suspended Janus droplets has been developed for the first time, which holds significant potential in a variety of applications for material synthesis, such as the electrospinning solution behavior when sprayed from the nozzle into the air.
Collapse
Affiliation(s)
| | | | | | | | - Chenchen Zhou
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, P. R. China
| | | | | |
Collapse
|