1
|
Cao M, Li B, Cao Y, Li Y, Tian R, Shen Q, Xie W, Gu W. Co-Fe-Mo Phosphides' Triphasic Heterostructure Loaded on Nitrogen-Doped Carbon Nanofibers by Electrospinning as Efficient Bifunctional Electrocatalysts for Overall Water Splitting. ACS APPLIED MATERIALS & INTERFACES 2025; 17:15259-15273. [PMID: 40029049 DOI: 10.1021/acsami.4c17441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The rational design of efficient and stable bifunctional electrocatalysts for the hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) poses a significant challenge in realizing environmentally friendly hydrogen production through electrocatalytic water splitting. The construction of heterostructure catalysts, coexisting of multiple components, represents a favorable approach for increasing active sites, modulating electronic structure, accelerating charge transfer, decreasing reaction energy barriers, and synergistically enhancing electrocatalytic performance. In this study, a triphasic metal phosphides' heterostructure among CoP, FeP, and MoP4 loaded on nitrogen-doped carbon nanofibers (labeled as CoP-FeP-MoP4@NC) was successfully synthesized through electrospinning and other subsequent steps as a bifunctional electrocatalyst material for water splitting. Benefiting from the strong interaction and synergistic effect among these components, CoP-FeP-MoP4@NC exhibits facile kinetics and high electrocatalytic activity under alkaline conditions with overpotentials (η) of 222 and 75 mV at a current density of 10 mA cm-2 for OER and HER, respectively, as well as a low cell voltage of 1.47 V at 10 mA cm-2 for overall water splitting. Moreover, the catalyst shows great long-term stability at a high current density of about 100 mA cm-2. The density functional theory calculations revealed that the CoP-FeP-MoP4 heterostructure can reduce the Gibbs free energy associated with the H2O dissociation and hydrogen adsorption during HER, as well as the rate-determining step for the OER, increase the electronic states near the Fermi level, and optimize the work function of the electrons, improving electrical conductivity and reaction capacity. This study presents an efficient and stable electrocatalytic material for water splitting, and the design concept provides insights for future rational construction of advanced electrocatalysts.
Collapse
Affiliation(s)
- Mengya Cao
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Bao Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yijia Cao
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yanrong Li
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ruixi Tian
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qing Shen
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Weiwei Xie
- Renewable Energy Conversion and Storage Center, Haihe Laboratory of Sustainable Chemical Transformations, Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen Gu
- Key Laboratory of Advanced Energy Materials Chemistry (MOE), Nankai University-HIFIMAN Research and Development Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Zhu Z, Duan J, Chen S. Metal-Organic Framework (MOF)-Based Clean Energy Conversion: Recent Advances in Unlocking its Underlying Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309119. [PMID: 38126651 DOI: 10.1002/smll.202309119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Indexed: 12/23/2023]
Abstract
Carbon neutrality is an important goal for humanity . As an eco-friendly technology, electrocatalytic clean energy conversion technology has emerged in the 21st century. Currently, metal-organic framework (MOF)-based electrocatalysis, including oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), hydrogen oxidation reaction (HOR), carbon dioxide reduction reaction (CO2RR), nitrogen reduction reaction (NRR), are the mainstream energy catalytic reactions, which are driven by electrocatalysis. In this paper, the current advanced characterizations for the analyses of MOF-based electrocatalytic energy reactions have been described in details, such as density function theory (DFT), machine learning, operando/in situ characterization, which provide in-depth analyses of the reaction mechanisms related to the above reactions reported in the past years. The practical applications that have been developed for some of the responses that are of application values, such as fuel cells, metal-air batteries, and water splitting have also been demonstrated. This paper aims to maximize the potential of MOF-based electrocatalysts in the field of energy catalysis, and to shed light on the development of current intense energy situations.
Collapse
Affiliation(s)
- Zheng Zhu
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Jingjing Duan
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| | - Sheng Chen
- Key Laboratory for Soft Chemistry and Functional Materials, School of Chemistry and Chemical Engineering, School of Energy and Power Engineering, Nanjing University of Science and Technology, Ministry of Education, Nanjing, 210094, China
| |
Collapse
|
3
|
Lyu C, Cheng J, Yang Y, Lau WM, Wang N, Wu Q, Zheng J. Modulating metal-support interaction and inducing electron-rich environment of Ni 2P NPs by B atoms incorporation for enhanced hydrogen evolution reaction performance. J Colloid Interface Sci 2023; 651:93-105. [PMID: 37540933 DOI: 10.1016/j.jcis.2023.07.180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/23/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Modulation of the electronic interaction between the metal and support has been verified as a feasible strategy to improve the electrocatalytic performance of supported-type catalysts. Here, we have successfully synthesized an electrocatalyst of Ni2P nanoparticles (NPs) anchored on B, N co-doped graphite-like carbon nanosheets (Ni2P@B, N-GC), and elucidated the main mechanism by which B atoms doping enhances electrocatalytic hydrogen evolution reaction (HER) performance. The B atoms with electron-rich characteristic not only modulate the electronic structure on carbon skeleton, but also regulate the interfacial electronic interaction between Ni2P NPs and the carbon skeleton, which can lead to the increased available electron density of Ni sites. Such optimization is conducive to accelerating proton transfer and promoting reactive activity. As revealed, the Ni2P@B, N-GC catalyst with B atoms doping exhibits superior performance to the Ni2P@N-GC catalyst in acidic, neutral and alkaline medias. In addition, the assembled Ni(OH)2@B, N-GC||Ni2P@B, N-GC electrolyzer displays prominent overall water splitting performance in alkaline solution, which only demands 1.57 V to reach 10 mA/cm2, and in complicated natural seawater electrolyte, as low as 1.59 V. Hence, the B atoms doping strategy shows the significant enhancement for HER electrocatalysis.
Collapse
Affiliation(s)
- Chaojie Lyu
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong 528000, China
| | - Jiarun Cheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Yuquan Yang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong 528000, China
| | - Woon-Ming Lau
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong 528000, China
| | - Ning Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Qi Wu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430073, China.
| | - Jinlong Zheng
- Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Foshan, Guangdong 528000, China.
| |
Collapse
|
4
|
De Villenoisy T, Zheng X, Wong V, Mofarah SS, Arandiyan H, Yamauchi Y, Koshy P, Sorrell CC. Principles of Design and Synthesis of Metal Derivatives from MOFs. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210166. [PMID: 36625270 DOI: 10.1002/adma.202210166] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Indexed: 06/16/2023]
Abstract
Materials derived from metal-organic frameworks (MOFs) have demonstrated exceptional structural variety and complexity and can be synthesized using low-cost scalable methods. Although the inherent instability and low electrical conductivity of MOFs are largely responsible for their low uptake for catalysis and energy storage, a superior alternative is MOF-derived metal-based derivatives (MDs) as these can retain the complex nanostructures of MOFs while exhibiting stability and electrical conductivities of several orders of magnitude higher. The present work comprehensively reviews MDs in terms of synthesis and their nanostructural design, including oxides, sulfides, phosphides, nitrides, carbides, transition metals, and other minor species. The focal point of the approach is the identification and rationalization of the design parameters that lead to the generation of optimal compositions, structures, nanostructures, and resultant performance parameters. The aim of this approach is to provide an inclusive platform for the strategies to design and process these materials for specific applications. This work is complemented by detailed figures that both summarize the design and processing approaches that have been reported and indicate potential trajectories for development. The work is also supported by comprehensive and up-to-date tabular coverage of the reported studies.
Collapse
Affiliation(s)
| | - Xiaoran Zheng
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Vienna Wong
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Sajjad S Mofarah
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), RMIT University, Melbourne, VIC, 3000, Australia
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW, 2006, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Pramod Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Charles C Sorrell
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
5
|
Liang R, Fan J, Lei F, Li P, Fu C, Lu Z, Hao W. Fabrication of ultra-stable and high-efficient CoP-based electrode toward seawater splitting at industrial-grade current density. J Colloid Interface Sci 2023; 645:227-240. [PMID: 37149997 DOI: 10.1016/j.jcis.2023.04.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/09/2023]
Abstract
The mild and rapid construction of economical, efficient and ultrastable electrodes for hydrogen production via water splitting at industrial-grade current density remains extremely challenging. Herein, a one-step mild electroless plating method is proposed to deposit cobalt phosphorus (CoP)-based species on robust nickel net (NN, denoted as Co-P@NN). The tight interfacial contact, corrosion-proof self-supporting substrate and synergistic effect of Co-P@Co-O contribute greatly to the rapid electron transport, high intrinsic activity and long-term durability in the alkaline simulated seawater (1.0 M KOH + 0.5 M NaCl). Attractively, Co-P@Co-O also achieves ultrastable catalysis for over 2880 h with negligible activity attenuation under various alkaline extreme conditions (simulated seawater, high-salt environment, domestic sewage and so on). Furthermore, this work successfully constructs a series of ternary elemental doped (Ni, S, B, Fe and so on) CoP-based catalytic electrodes for highly efficient overall seawater splitting (OSWS). This work demonstrates not only an ideal platform for the versatile strategy of mildly obtaining CoP-based electrocatalysts but also the pioneering philosophy of large-scale hydrogen production.
Collapse
Affiliation(s)
- Rikai Liang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Jinli Fan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Fengjing Lei
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Peng Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Chengyu Fu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Zikang Lu
- School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Weiju Hao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
6
|
Wang H, Zhang L, Zhang W, Sun S, Yao S. Highly Efficient Spatial Three-Level CoP@ZIF-8/pNF Based on Modified Porous NF as Dual Functional Electrocatalyst for Water Splitting. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1386. [PMID: 37110971 PMCID: PMC10142043 DOI: 10.3390/nano13081386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/09/2023] [Accepted: 04/13/2023] [Indexed: 06/19/2023]
Abstract
The development of non-noble metal catalysts for water electrolysis to product hydrogen meets the current strategic need for carbon peaking and carbon neutrality. However, complex preparation methods, low catalytic activity and high energy consumption still limit the application of these materials. Herein, in this work we prepared a three-level structured electrocatalyst of CoP@ZIF-8 growing on modified porous nickel foam (pNF) via the natural growing and phosphating process. In contrast to the common NF, the modified NF constructs a large number of micron-sized pores carrying the nanoscaled catalytic CoP@ZIF-8 on the millimeter-sized skeleton of bare NF, which significantly increases the specific surface area and catalyst load of the material. Thanks to the unique spatial three-level porous structure, electrochemical tests showed a low overpotential of 77 mV at 10 mA cm-2 for HER, and 226 mV at 10 mA cm-2 and 331 mV at 50 mA cm-2 for OER. The result obtained from testing the electrode's overall water splitting performance is also satisfactory, needing only 1.57 V at 10 mA cm-2. Additionally, this electrocatalyst showed great stability for more than 55 h when a 10 mA cm-2 constant current was applied to it. Based on the above characteristics, the present work demonstrates the promising application of this material to the electrolysis of water for the production of hydrogen and oxygen.
Collapse
Affiliation(s)
- Hongzhi Wang
- Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (H.W.)
| | - Limin Zhang
- Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (H.W.)
| | - Weiguo Zhang
- Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (H.W.)
- Institute of Sport and Health, Tianjin University of Sport, Tianjin 301617, China
| | | | - Suwei Yao
- Department of Applied Chemistry, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; (H.W.)
| |
Collapse
|
7
|
Priyanka, Yadav S, Dutta S, Rana P, Arora B, Sharma RK, Srivastava A, Sharma RK. Unleashing the catalytic potency of nanoporous Copper oxide particles derived from Copper 5-nitroisophthalate MOF towards the multicomponent synthesis of 2,3-dihydroquinazolinones. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Rezaee S, Shahrokhian S. Ruthenium/Ruthenium oxide hybrid nanoparticles anchored on hollow spherical Copper-Cobalt Nitride/Nitrogen doped carbon nanostructures to promote alkaline water splitting: Boosting catalytic performance via synergy between morphology engineering, electron transfer tuning and electronic behavior modulation. J Colloid Interface Sci 2022; 626:1070-1084. [PMID: 35839676 DOI: 10.1016/j.jcis.2022.07.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/21/2022] [Accepted: 07/05/2022] [Indexed: 10/31/2022]
Abstract
Exploring bi-functional electrocatalysts with excellent activity, good durability, and cost-effectiveness for electrochemical hydrogen and oxygen evolution reactions (HER and OER) in the same electrolyte is a critical step towards a sustainable hydrogen economy. Three main features such as high density of active sites, improved charge transfer, and optimized electronic configuration have positive effects on the electrocatalyst activity. In this context, understanding structure-composition-property relationships and catalyst activity is very important and highly desirable. Herein, for the first time, we present the design and fabrication of novel MOF-derived ultra-small Ru/RuO2 nanoparticles doped in copper/cobalt nitride (CuCoN) encapsulated in nitrogen-doped nanoporous carbon framework (NC) (Ru/RuO2/CuCoN@NC). For the synthesize of this nanocomposite, firstly bimetallic Cu-Co/MOF hollow nanospheres are prepared via a facile emulsion-based interfacial reaction method and used as the template for Ru ion doping (Ru-doped Cu-Co/MOF). Then, Ru-doped Cu-Co/MOF precursor during the carbonization/nitridation/cooling process converted to the Ru/RuO2/CuCoN@NC nanocomposite. Benefiting from the desirable compositional and structural advantages of more exposed active sites, optimized electronic structure, and interfacial synergy effect, Ru/RuO2/CuCoN@NC hollow nanosphere electrocatalyst demonstrates striking catalytic performances under alkaline conditions with a current density of 10 mA cm-2at low overpotentials of 41 mV for HER and 231 mV for OER, respectively. Moreover, as a bifunctional electrocatalyst for overall water splitting, a two-electrode device needs a voltage of 1.51 V to reach a current density of 10 mA cm-2. Comprehensive electrochemical studies show that the excellent electrocatalytic performance of the Ru/RuO2/CuCoN@NC hollow nanosphere could be attributed to the improved physical and chemical properties such as desirable compositional, catalysts uniform dispersion, structural advantages of more exposed active sites, optimized electronic structure, high electrical conductivity, and interfacial synergy effect. This work paves a novel avenue for constructing robust bifunctional electrocatalyst for overall water splitting.
Collapse
Affiliation(s)
- Sharifeh Rezaee
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran
| | - Saeed Shahrokhian
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
| |
Collapse
|
9
|
MOF-Derived Ultrathin Cobalt Molybdenum Phosphide Nanosheets for Efficient Electrochemical Overall Water Splitting. NANOMATERIALS 2022; 12:nano12071098. [PMID: 35407217 PMCID: PMC9000688 DOI: 10.3390/nano12071098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023]
Abstract
The development of high-performance and cost-effective earth-abundant transition metal-based electrocatalysts is of major interest for several key energy technologies, including water splitting. Herein, we report the synthesis of ultrathin CoMoP nanosheets through a simple ion etching and phosphorization method. The obtained catalyst exhibits outstanding electrocatalytic activity and stability towards oxygen and hydrogen evolution reactions (OER and HER), with overpotentials down to 273 and 89 mV at 10 mA cm−2, respectively. The produced CoMoP nanosheets are also characterized by very small Tafel slopes, 54.9 and 69.7 mV dec−1 for OER and HER, respectively. When used as both cathode and anode electrocatalyst in the overall water splitting reaction, CoMoP-based cells require just 1.56 V to reach 10 mA cm−2 in alkaline media. This outstanding performance is attributed to the proper composition, weak crystallinity and two-dimensional nanosheet structure of the electrocatalyst.
Collapse
|