1
|
Wu S, Schmuki P. Single Atom Cocatalysts in Photocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414889. [PMID: 39969405 PMCID: PMC11837903 DOI: 10.1002/adma.202414889] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/12/2024] [Indexed: 02/20/2025]
Abstract
Single-atom (SA) cocatalysts (SACs) have garnered significant attention in photocatalysis due to their unique electronic properties and high atom utilization efficiency. This review provides an overview of the concept and principles of SA cocatalyst in photocatalysis, emphasizing the intrinsic differences to SAs used in classic chemical catalysis. Key factors that influence the efficiency of SAs in photocatalytic reactions, particularly in photocatalytic hydrogen (H2) production, are highlighted. This review further covers synthesis methods, stabilization strategies, and characterization techniques for common SAs used in photocatalysis. Notably, "reactive deposition" method, which often shows a self-homing effect and thus achieves a maximum utilization efficiency of SA cocatalysts, is emphasized. Furthermore, the applications of SA cocatalysts in various photocatalytic processes, including H2 evolution, carbon dioxide reduction, nitrogen fixation, and organic synthesis, are comprehensively reviewed, along with insights into common artifacts in these applications. This review concludes by addressing the challenges faced by SACs in photocatalysis and offering perspectives on future developments, with the aim of informing and advancing research on SAs for photocatalytic energy conversion.
Collapse
Affiliation(s)
- Si‐Ming Wu
- Department of Materials Science WW4‐LKOUniversity of Erlangen‐NurembergMartensstraße 791058ErlangenGermany
| | - Patrik Schmuki
- Department of Materials Science WW4‐LKOUniversity of Erlangen‐NurembergMartensstraße 791058ErlangenGermany
- Regional Centre of Advanced Technologies and MaterialsŠlechtitelů 27Olomouc78371Czech Republic
| |
Collapse
|
2
|
Cai W, Liu J, Luo Y, Liao Z, Li B, Xiang X, Fang Y. Bifunctional CdS-MoO 2 catalysts for selective oxidation of lactic acid coupled with photocatalytic H 2 production. J Colloid Interface Sci 2024; 675:836-847. [PMID: 39002234 DOI: 10.1016/j.jcis.2024.07.081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
The persistent hurdles of charge rapid recombination, inefficient use of light and utilization of sacrificial reagents have plagued the field of photocatalytic hydrogen evolution (PHE). In this research, tiny MoO2 nanoparticles of 10 nm in diameter were prepared through a straightforward solvothermal approach with a specific ratio of oleylamine and oleic acid as stabilizers. The critical factor in the synthesis process was found to be the ratio of oleylamine to oleic acid. Moreover, a two-phase interface assembly method facilitated the uniform deposition of MoO2 onto CdS nanorods. Due to the localized plasmonic-thermoelectric effect on the surface of MoO2 along with its abundant oxygen vacancies, the composite catalyst exhibited outstanding photo-utilization efficiency and an abundance of active sites. The CdS-MoO2 composite displayed a unique photochemical property in transforming lactic acid into pyruvic acid and generating hydrogen simultaneously. After exposure to artificial sunlight for 4 h, significant values of 4.7 and 3.7 mmol⋅g-1⋅h-1 were achieved for hydrogen production and pyruvic acid formation, respectively, exceeding CdS alone by 3.29 and 4.02-fold, while the selectivity of pyruvic acid was 95.68 %. Furthermore, the S-Scheme electron transport mechanism in the composites was elucidated using Electron Paramagnetic Resonance (EPR) spectroscopy, radical trapping experiments, energy band structure analysis, and the identification of critical intermediates in the process of selective oxidation. This work sheds light on the design and preparation of high-performance photocatalysts for biorefining coupled with efficient hydrogen evolution.
Collapse
Affiliation(s)
- Wei Cai
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; School of Advanced Manufacturing, Guangdong University of Technology, Jieyang Center of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Jincheng Liu
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; School of Advanced Manufacturing, Guangdong University of Technology, Jieyang Center of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.
| | - Yijun Luo
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; School of Advanced Manufacturing, Guangdong University of Technology, Jieyang Center of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Zewei Liao
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; School of Advanced Manufacturing, Guangdong University of Technology, Jieyang Center of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Bingjie Li
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; School of Advanced Manufacturing, Guangdong University of Technology, Jieyang Center of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Xiaoyan Xiang
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; School of Advanced Manufacturing, Guangdong University of Technology, Jieyang Center of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| | - Yanxiong Fang
- Guangdong University of Technology, School of Light Industry & Chemical Engineering, Guangzhou Key Lab Clean Transport Energy Chemistry, Guangzhou 510006, China; School of Advanced Manufacturing, Guangdong University of Technology, Jieyang Center of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China
| |
Collapse
|
3
|
Ma T, Li W, Li J, Duan W, Gao F, Liao G, Li J, Wang C. Multisite Cocatalysis: Single atomic Pt 2+/Pt 0 active sites synergistically improve the simulated sunlight driven H 2O-to-H 2 conversion performance of Sb 2S 3 nanorods. J Colloid Interface Sci 2024; 658:476-486. [PMID: 38128191 DOI: 10.1016/j.jcis.2023.12.087] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/10/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Single atomic metal (SAM) cocatalysis is a potential strategy to improve the performance of photocatalytic materials. However, the cocatalytic mechanism of SAM sites in different valence states is rarely reported. Herein, single atomic Pt2+/Pt0 active sites were anchored on Sb2S3 nanorods to synergistically improve the photoactivity for hydrogen production under simulated sunlight. Experimental results and density functional theory calculations indicated that the coexistence of single atomic Pt2+/Pt0 sites synergistically improves the broadband light harvesting and promotes the Sb2S3-to-Pt electron transfer following inhibited photoexciton recombination kinetics and enhanced H proton adsorption capacity, resulting higher and more durable photoactivity for hydrogen production. Therefore, the optimal Sb2S3-Pt0.9‰ composite catalyst achieved remarkably enhanced hydrogen evolution rate of 1.37 mmol∙g-1∙h-1 (about 105-fold greater of that of Sb2S3 NRs) under faintly alkaline condition, and about 5.41 % of apparent quantum yield (AQY700 nm) was achieved, which shows obvious superiority in hydrogen production by contrasting with the reported Sb2S3-based photocatalysts and conventional semiconductor photocatalytic materials modified with noble metals. This study elucidate a well-defined mechanism of multisite cocatalysis for photoactivity improvement.
Collapse
Affiliation(s)
- Tenghao Ma
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wei Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| | - Jiayuan Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Wen Duan
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Fanfan Gao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guocheng Liao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Ji Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Chuanyi Wang
- School of Environmental Sciences and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
4
|
Li W, Li J, Ma T, Liao G, Gao F, Duan W, Luo K, Wang C. Construction of Core-shell Sb 2 s 3 @Cds Nanorod with Enhanced Heterointerface Interaction for Chromium-Containing Wastewater Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302737. [PMID: 37345587 DOI: 10.1002/smll.202302737] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/07/2023] [Indexed: 06/23/2023]
Abstract
How to collaboratively reduce Cr(VI) and break Cr(III) complexes is a technical challenge to solve chromium-containing wastewater (CCW) pollution. Solar photovoltaic (SPV) technology based on semiconductor materials is a potential strategy to solve this issue. Sb2 S3 is a typical semiconductor material with total visible-light harvesting capacity, but its large-sized structure highly aggravates disordered photoexciton migration, accelerating the recombination kinetics and resulting low-efficient photon utilization. Herein, the uniform mesoporous CdS shell is in situ formed on the surface of Sb2 S3 nanorods (NRs) to construct the core-shell Sb2 S3 @CdS heterojunction with high BET surface area and excellent near-infrared light harvesting capacity via a surface cationic displacement strategy, and density functional theory thermodynamically explains the breaking of SbS bonds and formation of CdS bonds according to the bond energy calculation. The SbSCd bonding interaction and van der Waals force significantly enhance the stability and synergy of Sb2 S3 /CdS heterointerface throughout the entire surface of Sb2 S3 NRs, promoting the Sb2 S3 -to-CdS electron transfer due to the formation of built-in electric field. Therefore, the optimized Sb2 S3 @CdS catalyst achieves highly enhanced simulated sunlight-driven Cr(VI) reduction (0.154 min-1 ) and decomplexation of complexed Cr(III) in weakly acidic condition, resulting effective CCW treatment under co-action of photoexcited electrons and active radicals. This study provides a high-performance heterostructured catalyst for effective CCW treatment by SPV technology.
Collapse
Affiliation(s)
- Wei Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Jiayuan Li
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Tenghao Ma
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Guocheng Liao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Fanfan Gao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Wen Duan
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Chemical Additives for Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Keling Luo
- School of Arts and Sciences, Shaanxi University of Science & Technology, Xi'an, Shaanxi, 710021, China
| | - Chuanyi Wang
- School of Environmental Sciences and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| |
Collapse
|
5
|
Cencerrero J, Sánchez P, de Lucas-Consuegra A, de la Osa A, Romero A. Influence of boron doping level and calcination temperature on hydrogen evolution reaction in acid medium of metal-free graphene aerogels. Heliyon 2023; 9:e20748. [PMID: 37876428 PMCID: PMC10590791 DOI: 10.1016/j.heliyon.2023.e20748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/29/2023] [Accepted: 10/05/2023] [Indexed: 10/26/2023] Open
Abstract
In this work, metal-free boron-doped graphene-based aerogels were successfully synthesized via a one-step autoclave assembly followed by freeze-drying and used as electrocatalysts for the hydrogen evolution reaction (HER) in acidic media. The synthesized reduced graphene oxide aerogels (rGOA) showed improved electrocatalytic activity by introducing boron and structural defects. The amount of boric acid used both as a dopant and reducing agent in the synthesis was optimized (boric acid/GO mass ratio = 17.5) to practically reach the crystallization limit of boric acid (boric acid/GO mass ratio = 20). It was observed that the higher the amount of boric acid added, the more boron was incorporated into the carbonaceous structure, improving the electrocatalytic activity of the final aerogel. Furthermore, calcination of the boron-doped electrocatalyst at 600 °C resulted in final aerogels with low oxygen content, moderate surface area, bimodal pore size distribution, and a high electrochemical active surface area. The final 3D graphene aerogel developed in this work, showed such outstanding electrocatalytic activity in HER as to replace noble metal-based electrocatalysts in the future.
Collapse
Affiliation(s)
- J. Cencerrero
- Department of Chemical Engineering, Technical School of Agronomic Engineers. University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071, Ciudad Real, Spain
| | - P. Sánchez
- Department of Chemical Engineering, Technical School of Agronomic Engineers. University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071, Ciudad Real, Spain
| | - A. de Lucas-Consuegra
- Department of Chemical Engineering, Technical School of Agronomic Engineers. University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071, Ciudad Real, Spain
| | - A.R. de la Osa
- Department of Chemical Engineering, Technical School of Agronomic Engineers. University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071, Ciudad Real, Spain
| | - A. Romero
- Faculty of Chemical Sciences and Technologies, Technical School of Agronomic Engineers. University of Castilla-La Mancha, Avda. Camilo José Cela 12, 13071, Ciudad Real, Spain
| |
Collapse
|
6
|
Li CF, Pan WG, Zhang ZR, Wu T, Guo RT. Recent Progress of Single-Atom Photocatalysts Applied in Energy Conversion and Environmental Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300460. [PMID: 36855324 DOI: 10.1002/smll.202300460] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/13/2023] [Indexed: 06/02/2023]
Abstract
Photocatalysis driven by solar energy is a feasible strategy to alleviate energy crises and environmental problems. In recent years, significant progress has been made in developing advanced photocatalysts for efficient solar-to-chemical energy conversion. Single-atom catalysts have the advantages of highly dispersed active sites, maximum atomic utilization, unique coordination environment, and electronic structure, which have become a research hotspot in heterogeneous photocatalysis. This paper introduces the potential supports, preparation, and characterization methods of single-atom photocatalysts in detail. Subsequently, the fascinating effects of single-atom photocatalysts on three critical steps of photocatalysis (the absorption of incident light to produce electron-hole pairs, carrier separation and migration, and interface reactions) are analyzed. At the same time, the applications of single-atom photocatalysts in energy conversion and environmental protection (CO2 reduction, water splitting, N2 fixation, organic macromolecule reforming, air pollutant removal, and water pollutant degradation) are systematically summarized. Finally, the opportunities and challenges of single-atom catalysts in heterogeneous photocatalysis are discussed. It is hoped that this work can provide insights into the design, synthesis, and application of single-atom photocatalysts and promote the development of high-performance photocatalytic systems.
Collapse
Affiliation(s)
- Chu-Fan Li
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Wei-Guo Pan
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai, 200090, P. R. China
| | - Zhen-Rui Zhang
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Tong Wu
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
| | - Rui-Tang Guo
- College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, 200090, P. R. China
- Shanghai Non-Carbon Energy Conversion and Utilization Institute, Shanghai, 200090, P. R. China
- Key Laboratory of Environmental Protection Technology for Clean Power Generation in Machinery Industry, Shanghai, 200090, P. R. China
| |
Collapse
|
7
|
Chen L, Chen F, Ying S, Liang R, Yan G, Wang X, Xia Y. Ultrafast charge separation in a WC@C/CdS heterojunction enables efficient visible-light-driven hydrogen generation. Dalton Trans 2023; 52:290-296. [PMID: 36484709 DOI: 10.1039/d2dt03129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The rapid recombination of photogenerated carriers and strong photocorrosion have considerably limited the practical application of CdS in the field of photocatalysis. Loading a cocatalyst has been widely utilized to largely enhance photocatalytic activity. In the present work, a WC@C cocatalyst was prepared by a novel molten salt method and explored as an efficient noble-metal-free cocatalyst to significantly enhance the photocatalytic hydrogen evolution rate of CdS nanorods. The WC@C/CdS composite photocatalyst with a 7 wt% content of WC@C showed the highest photocatalytic hydrogen evolution rate of 8.84 mmol g-1 h-1, which was about 21 and 31 times higher than those of CdS and 7 wt% Pt/CdS under visible light irradiation. A high apparent quantum efficiency (AQY) of 55.28% could be achieved under 420 nm monochromatic light. Furthermore, the photocatalytic activity of the 7 wt% WC@C/CdS photocatalyst exhibited good stability for 12 consecutive cycles of the photocatalytic experiment with a total reaction time of 42 h. The excellent photocatalytic performance of the photocatalyst was attributed to the formation of a Schottky junction and the loading cocatalyst, which not only accelerated the separation of the photogenerated carrier but also provided a reactive site for hydrogen evolution. This work revealed that WC@C could act as an excellent cocatalyst for enhancing the photocatalytic activity of CdS nanorods.
Collapse
Affiliation(s)
- Lu Chen
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Feng Chen
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Shaoming Ying
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Ruowen Liang
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Guiyang Yan
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, PR China
| | - Yuzhou Xia
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| |
Collapse
|
8
|
Mbrouk O, Fawzy M, El-Shafey HM, Saif M, Abdel Mottaleb MSA, Hafez H. Viable production of hydrogen and methane from polluted water using eco-friendly plasmonic Pd-TiO 2 nanocomposites. RSC Adv 2023; 13:770-780. [PMID: 36686912 PMCID: PMC9809211 DOI: 10.1039/d2ra07442g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/12/2022] [Indexed: 01/04/2023] Open
Abstract
Solar-to-fuel conversion is a novel clean energy approach that has gained the interest of many researchers. Solar-driven photocatalysts have become essential to providing valuable fuel gases such as methane and hydrogen. Solar energy has emerged as a renewable, abundant energy source that can efficiently drive photochemical reactions through plasmonic photocatalysis. As a capping agent, orange peel extract was used in this study in a microwave-assisted green method to incorporate titanium dioxide with distinct amounts (3, 5, and 7 wt%) from Pd-plasmonic nanoparticles (2-5 nm). The leading role for plasmonic nanoparticles made from Pd-metal is enhancing the photocatalyst's ability to capture visible light, improving its performance. X-Ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Brunauer, Emmett, and Teller (BET) surface area analysis, and UV-vis DRS analyses have investigated the obtained plasmonic photocatalysts' crystallographic, morphological, and optical characteristics. The UV-vis absorption spectra demonstrated the visible light absorption capacity attributed to the localized surface plasmonic resonance (LSPR) behavior of the newly formed nanoplasmonic photocatalysts. The generated Pd-TiO2 nanomaterials' photocatalytic activity has been examined and evaluated for combustible gas production, including the formation of CH4 and H2 from the photocatalytic degradation of Reactive Yellow 15 (RY) during a deoxygenated photoreaction in a homemade solar photobiogas reactor.
Collapse
Affiliation(s)
- Omar Mbrouk
- Nano-Photochemistry and Its Environmental Applications Laboratory, Environmental Studies, and Research Institute (ESRI), University of Sadat City (USC, ) P. O. 32897 Sadat City 23897 Menofia Egypt
| | - M Fawzy
- Nano-Photochemistry and Its Environmental Applications Laboratory, Environmental Studies, and Research Institute (ESRI), University of Sadat City (USC, ) P. O. 32897 Sadat City 23897 Menofia Egypt
| | - H M El-Shafey
- Nano-Photochemistry and Its Environmental Applications Laboratory, Environmental Studies, and Research Institute (ESRI), University of Sadat City (USC, ) P. O. 32897 Sadat City 23897 Menofia Egypt
| | - M Saif
- Chemistry Department, Faculty of Education, Ain Shams University Roxy Cairo Egypt
| | - M S A Abdel Mottaleb
- Nano-Photochemistry, Solar Chemistry, and Computational Chemistry Laboratories, Department of Chemistry, Faculty of Science, Ain Shams University Abbassia 11566 Cairo Egypt
| | - H Hafez
- Nano-Photochemistry and Its Environmental Applications Laboratory, Environmental Studies, and Research Institute (ESRI), University of Sadat City (USC, ) P. O. 32897 Sadat City 23897 Menofia Egypt
| |
Collapse
|
9
|
Tao S, Zhong W, Chen F, Wang P, Yu H. Dispersible CdS 1-xSe x solid-solution nanocrystal photocatalysts: Photoinduced self-transformation synthesis and enhanced hydrogen-evolution activity. J Colloid Interface Sci 2022; 627:320-331. [PMID: 35863191 DOI: 10.1016/j.jcis.2022.07.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 10/17/2022]
Abstract
Modulating the electronic structure of Cadmium sulfide (CdS) by non-metallic elements to produce solid-solution photocatalysts serves as a potential route to improve its performance of photocatalytic hydrogen (H2) evolution. However, exploring an effective synthetic route of CdS-based solid solution is still a great challenge. Herein, the CdS1-xSex solid-solution nanocrystals were successfully synthesized by an accessible photoinduced self-transformation route, including the direct formation of dispersible CdS1-x(SeS)x and the in situ self-transformation of selenosulfide ((SeS)2-) to Se2- by photoexcited electrons. The prepared CdS1-xSex solid-solution photocatalysts possess a small crystallite size of ca. 5 nm and their bandgaps can be easily tuned in a wide range of 1.84-2.28 eV by tailoring the mole ratio of Se/S. The resultant CdS0.90Se0.10 solid-solution photocatalyst realizes the highest H2-production tempo of 94.6 μmol·h-1, which is 1.6 folds higher than that of CdS. The experimental and theoretical studies supported that the incorporation of Se atoms could not only narrow the bandgap value to reinforce visible-light absorption, but also tune its electronic structure to optimize interfacial H2-evolution dynamics, thus achieving an efficient photocatalytic H2-production rate of the dispersible CdS1-xSex solid solution. This study may deliver advanced inspirations for optimizing the electronic structure of photocatalysts towards sustainable H2 production.
Collapse
Affiliation(s)
- Siqin Tao
- School of Chemistry, Chemical Engineering and Life Sciences, and State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Wei Zhong
- School of Chemistry, Chemical Engineering and Life Sciences, and State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Feng Chen
- School of Chemistry, Chemical Engineering and Life Sciences, and State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Ping Wang
- School of Chemistry, Chemical Engineering and Life Sciences, and State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China
| | - Huogen Yu
- School of Chemistry, Chemical Engineering and Life Sciences, and State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, PR China; Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430070, PR China.
| |
Collapse
|