1
|
Lo CH, Cheong LYT, Zeng J. Nanoplatforms Targeting Intrinsically Disordered Protein Aggregation for Translational Neuroscience Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:704. [PMID: 40423094 DOI: 10.3390/nano15100704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/26/2025] [Accepted: 05/07/2025] [Indexed: 05/28/2025]
Abstract
Intrinsically disordered proteins (IDPs), such as tau, beta-amyloid (Aβ), and alpha-synuclein (αSyn), are prone to misfolding, resulting in pathological aggregation and propagation that drive neurodegenerative diseases, including Alzheimer's disease (AD), frontotemporal dementia (FTD), and Parkinson's disease (PD). Misfolded IDPs are prone to aggregate into oligomers and fibrils, exacerbating disease progression by disrupting cellular functions in the central nervous system, triggering neuroinflammation and neurodegeneration. Furthermore, aggregated IDPs exhibit prion-like behavior, acting as seeds that are released into the extracellular space, taken up by neighboring cells, and have a propagating pathology across different regions of the brain. Conventional inhibitors, such as small molecules, peptides, and antibodies, face challenges in stability and blood-brain barrier penetration, limiting their efficacy. In recent years, nanotechnology-based strategies, such as multifunctional nanoplatforms or nanoparticles, have emerged as promising tools to address these challenges. These nanoplatforms leverage tailored designs to prevent or remodel the aggregation of IDPs and reduce associated neurotoxicity. This review discusses recent advances in nanoplatforms designed to target tau, Aβ, and αSyn aggregation, with a focus on their roles in reducing neuroinflammation and neurodegeneration. We examine critical aspects of nanoplatform design, including the choice of material backbone and targeting moieties, which influence interactions with IDPs. We also highlight key mechanisms including the interaction between nanoplatforms and IDPs to inhibit their aggregation, redirect aggregation cascade towards nontoxic, off-pathway species, and disrupt fibrillar structures into soluble forms. We further outline future directions for enhancing IDP clearance, achieving spatiotemporal control, and improving cell-specific targeting. These nanomedicine strategies offer compelling paths forward for developing more effective and targeted therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Chih Hung Lo
- Department of Biology, Syracuse University, Syracuse, NY 13244, USA
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA
| | - Lenny Yi Tong Cheong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Jialiu Zeng
- Interdisciplinary Neuroscience Program, Syracuse University, Syracuse, NY 13244, USA
- Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY 13244, USA
| |
Collapse
|
2
|
Taverna C, Fasolato C, Brasili F, Ripanti F, Rizza C, De Marcellis A, Postorino P, Sennato S, Nucara A, Capocefalo A. Probing the effect of the molecular interface of gold nanoparticles on the disassembly of insulin amyloid fibrils. Int J Biol Macromol 2025; 306:141735. [PMID: 40043982 DOI: 10.1016/j.ijbiomac.2025.141735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 05/03/2025]
Abstract
Aberrant protein aggregation into amyloid fibrils underlies the onset of several degenerative pathologies, requiring increasing efforts to identify ever newer approaches to prevent their formation and to disassemble toxic amyloid structures. In this context, gold nanoparticles (AuNPs) show great promise, thanks to their ability to chemically interact with proteins while simultaneously serving as local spectroscopic probes due to their peculiar optical properties. Here, we investigate the role of the surface chemistry of AuNPs in the disassembly of insulin amyloid fibrils. By taking advantage of the remarkable sensitivity and spatial resolution of surface enhanced Raman spectroscopy, we elucidate the molecular mechanisms driving fibril-AuNP interaction at the nanoscale, identifying the amino acids directly involved. The obtained results will serve as a benchmark for developing novel diagnostic and therapeutic strategies employing AuNPs for the treatment of amyloid-related diseases.
Collapse
Affiliation(s)
- C Taverna
- Physics Department, Sapienza University of Rome, P.le Aldo Moro, 5, Rome 00185, Italy; Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin 91192, France
| | - C Fasolato
- Institute for Complex Systems, National Research Council, P.le Aldo Moro, 5, Rome 00185, Italy
| | - F Brasili
- Institute for Complex Systems, National Research Council, P.le Aldo Moro, 5, Rome 00185, Italy
| | - F Ripanti
- Department of Life and Environmental Sciences, Marche Polytechnic University, Via Brecce Bianche, Ancona 60131, Italy
| | - C Rizza
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, L'Aquila 67100, Italy
| | - A De Marcellis
- Department of Information Engineering, Computer Science and Mathematics, University of L'Aquila, via Vetoio, L'Aquila 67100, Italy
| | - P Postorino
- Physics Department, Sapienza University of Rome, P.le Aldo Moro, 5, Rome 00185, Italy
| | - S Sennato
- Institute for Complex Systems, National Research Council, P.le Aldo Moro, 5, Rome 00185, Italy
| | - A Nucara
- Physics Department, Sapienza University of Rome, P.le Aldo Moro, 5, Rome 00185, Italy.
| | - A Capocefalo
- Department of Physical and Chemical Sciences, University of L'Aquila, via Vetoio, L'Aquila 67100, Italy.
| |
Collapse
|
3
|
Liu L, He H, Du B, He Y. Nanoscale drug formulations for the treatment of Alzheimer's disease progression. RSC Adv 2025; 15:4031-4078. [PMID: 39926227 PMCID: PMC11803502 DOI: 10.1039/d4ra08128e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disorder with no effective disease-modifying treatments. The blood-brain barrier hinders drug delivery to the brain, limiting therapeutic efficacy. Nanoparticle-based systems have emerged as promising tools to overcome these challenges. This review highlights recent advances in nanoparticle technologies for AD treatment, including liposomes, polymeric, inorganic, and biomimetic nanoparticles. These nanoparticles improve drug delivery across the blood-brain barrier, improve stability and bioavailability, and enable targeted delivery to affected brain regions. Functionalization strategies further enhance their therapeutic potential. Multifunctional nanoparticles combining therapeutic and diagnostic properties offer theranostic approaches. While progress has been made, challenges related to safety, targeting precision, and clinical translation remain. Future perspectives emphasize the need for collaborative efforts to optimize nanoparticle design, conduct rigorous studies, and accelerate the development of effective nanotherapeutics. With continued innovation, nanoparticle-based delivery systems hold great promise for revolutionizing AD treatment.
Collapse
Affiliation(s)
- Liqin Liu
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Haini He
- Department of Pediatrics of Neurology Nursing, West China School of Nursing, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| | - Bin Du
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University Chengdu 610000 China
| | - Yang He
- Department of Pediatrics, West China Second University Hospital, Sichuan University Chengdu 610000 China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education Chengdu 610000 China
| |
Collapse
|
4
|
Liu L, Liu W, Sun Y, Dong X. Serum albumin-embedding copper nanoclusters inhibit Alzheimer's β-amyloid fibrillogenesis and neuroinflammation. J Colloid Interface Sci 2024; 672:53-62. [PMID: 38830318 DOI: 10.1016/j.jcis.2024.05.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/10/2024] [Accepted: 05/25/2024] [Indexed: 06/05/2024]
Abstract
Increasing evidence suggests that the accumulations of reactive oxygen species (ROS), β-amyloid (Aβ), and neuroinflammation are crucial pathological hallmarks for the onset of Alzheimer's disease (AD), yet there are few effective treatment strategies. Therefore, design of nanomaterials capable of simultaneously elimination of ROS and inhibition of Aβ aggregation and neuroinflammation is urgently needed for AD treatment. Herein, we designed human serum albumin (HSA)-embedded ultrasmall copper nanoclusters (CuNCs@HSA) via an HSA-mediated fabrication strategy. The as-prepared CuNCs@HSA exhibited outstanding multiple enzyme-like properties, including superoxide dismutase (>5000 U/mg), catalase, and glutathione peroxidase activities as well as hydroxyl radicals scavenging ability. Besides, CuNCs@HSA prominently inhibited Aβ fibrillization, and its inhibitory potency was 2.5-fold higher than native HSA. Moreover, CuNCs@HSA could significantly increase the viability of Aβ-treated cells from 60 % to over 96 % at 40 μg/mL and mitigate Aβ-induced oxidative stresses. The secretion of neuroinflammatory cytokines by lipopolysaccharide-induced BV-2 cells, including tumor necrosis factor-α and interleukin-6, was alleviated by CuNCs@HSA. In vivo studies manifested that CuNCs@HSA effectively suppressed the formation of plaques in transgenic C. elegans, reduced ROS levels, and extended C. elegans lifespan by 5 d. This work, using HSA as a template to mediate the fabrication of copper nanoclusters with robust ROS scavenging capability, exhibited promising potentials in inhibiting Aβ aggregation and neuroinflammation for AD treatment.
Collapse
Affiliation(s)
- Luqi Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China.
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Zhang T, Wu J, Wang Y, Zhang H, Zhan X. Alleviating neuronal inflammation induced by Aβ 42 in SH-SY5Y through interaction with polysialic acid-oligomannuronate conjugate. Int J Biol Macromol 2024; 276:133862. [PMID: 39013512 DOI: 10.1016/j.ijbiomac.2024.133862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/08/2024] [Accepted: 07/11/2024] [Indexed: 07/18/2024]
Abstract
Amyloid beta (Aβ) aggregation is one of the distinctive pathological hallmarks of Alzheimer's disease (AD). Therefore, the development of effective inhibitors against Aβ aggregate formation offers great promise for the treatment of AD. In this study, we designed a novel negatively charged functionalized conjugate aimed at inhibiting Aβ42 aggregation and attenuating neurotoxicity by grafting polysialic acid with mannuronate oligosaccharide, a biocompatible glycan extracted from seaweeds, designated as polysialic acid-mannan conjugate (PSA-MOS). ThT, biological microscopy, TEM and CD confirmed the inhibition of Aβ42 aggregation by PSA-MOS, as well as its ability to inhibit the conformational transition of Aβ42 to β-sheet. CCK-8 assay demonstrated that PSA-MOS was not cytotoxic to SH-SY5Y (p < 0.05) and promoted cell proliferation. In the Aβ42-induced SH-SY5Y injury models, PSA-MOS dose-dependently ameliorated cytotoxicity (p < 0.0001) and significantly reduced the levels of inflammatory factors of IL-1β (p < 0.0001), IL-6 (p < 0.0001) and TNF-α (p < 0.05). MD simulations demonstrated that PSA-MOS effectively impeded the α-helix to β-sheet transition of the Aβ42 monomer via electrostatic interactions with its CTR and NTR regions. These findings demonstrate the therapeutic potential of PSA-MOS as promising glycoconjugate for the treatment of AD.
Collapse
Affiliation(s)
- Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China.
| | - Yuying Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
6
|
Chen H, Zou L, Hossain E, Li Y, Liu S, Pu Y, Mao X. Functional structures assembled based on Au clusters with practical applications. Biomater Sci 2024; 12:4283-4300. [PMID: 39028030 DOI: 10.1039/d4bm00455h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The advancement of gold nanoclusters (Au NCs) has given rise to a new era in fabricating functional materials due to their controllable morphology, stable optical properties, and excellent biocompatibility. Assemblies based on Au NCs demonstrate significant potentiality in constructing multiple structures as acceptable agents in applications such as sensing, imaging technology, and drug delivery systems. In addition, the assembled strategies illustrate the integration mechanism between each component while facing material requirement. It is necessary to provide supplementary and comprehensive reviews on the assembled functional structures (based Au NCs), which hold promise for applications and could expand their functional range and potential applications. This review focuses on the assembled structures of Au NCs in combination with metals, metal oxides, and non-metal materials, which are intricately arranged through various interaction forces including covalent bonds and metal coordination, resulting in a diverse array of multifunctional Au NC assemblies. These assemblies have widespread applications in fields such as biological imaging, drug delivery, and optical devices. The review concludes by highlighting the challenges and future prospects of Au NC assemblies, emphasizing the importance of continued research to advance nanomaterial assembly innovation.
Collapse
Affiliation(s)
- Hao Chen
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Ligang Zou
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Ekram Hossain
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yixin Li
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Shaojun Liu
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yaoyang Pu
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Xiang Mao
- State Key Laboratory of Ultrasound in Medicine and Engineering College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China.
- Chongqing Key Laboratory of Biomedical Engineering, College of Biomedical Engineering, Chongqing Medical University, Chongqing 400016, P. R. China
| |
Collapse
|
7
|
Liu L, Liu W, Sun Y, Dong X. Design of aggregation-induced emission-active fluorogen-based nanoparticles for imaging and scavenging Alzheimer's β-amyloid by photo-oxygenation. J Mater Chem B 2023; 11:8994-9004. [PMID: 37705421 DOI: 10.1039/d3tb01134h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Photo-oxygenation has emerged as an effective modality for scavenging Alzheimer's amyloid-β (Aβ) plaques. However, limitations of the current photo-oxidants, such as low Aβ-targeting and single functionality, hinder the scavenging of Aβ plaques via photo-oxygenation. Herein, based on an aggregation-induced emission (AIE)-active fluorogen (named TPMD), we designed AIE photo-oxidant nanoparticles (T-LD NPs) for Aβ imaging, inhibition, and disaggregation. The T-LD NPs were prepared by the assembly of hydrophobic TPMD with an Aβ-targeting peptide (LPPFD, L) conjugated amphiphilic polymer (DSPE-PEG). Such T-LD NPs could specifically label Aβ plaques for image-guided therapy. Under laser irradiation, T-LD NPs generated a plethora of reactive oxygen species (ROS), including 1O2, ˙OH, and O2˙-, to oxygenate Aβ species, leading to the potent inhibition of Aβ fibrillization, and significant alleviation of Aβ-mediated neurotoxicity (36% to 10% at 20 μg mL-1). Notably, T-LD NPs could rapidly disaggregate mature Aβ fibrils into fractured β-sheet rich aggregates via photo-oxygenation, resulting in alleviated cytotoxicity. In vivo studies revealed that the photo-activated T-LD NPs scavenged amyloid plaques in the transgenic C. elegans strain CL2006 and extended the lifespan by 4 days. Taken together, this multifunctional T-LD NP integrated Aβ-targeting, near-infrared fluorescence imaging, and photo-oxygenation, provides a new strategy for the development of multifunctional AIE photo-oxidants for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Luqi Liu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Wei Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology and Key Laboratory of Systems Bioengineering and Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin 300350, China.
| |
Collapse
|
8
|
Wu J, Wang C, Zhang T, Zhang H, Zhan X. Synthesis of mannan oligosaccharide-sialic acid conjugates and its inhibition on Aβ42 aggregation. Carbohydr Res 2023; 531:108891. [PMID: 37393628 DOI: 10.1016/j.carres.2023.108891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/04/2023]
Abstract
In this work, a mannan-oligosaccharide conjugate with sialic acid capable of perturbing Aβ42 aggregation was designed and synthesized. Mannan oligosaccharides with degree polymerization of 3-13 were obtained by stepwise hydrolysis of locust bean gum using β-mannanase and α-galactosidase, named as LBOS. The activated LBOS was further chemically conjugated with sialic acid (Sia, N-acetylneuraminic acid) by fluoro-mercapto chemical coupling to synthesize a conjugate LBOS-Sia, and then phosphorylated to obtain pLBOS-Sia. The successful synthesis of pLBOS-Sia was confirmed by infrared1 chromatography, mass spectrometry, and 1H NMR. The soluble protein analysis, microscopic observation, thioflavin T-labeling, and circular dichroism spectroscopy revealed that both LBOS-Sia and pLBOS-Sia can inhibit Aβ42 aggregation. MTT assay showed that LBOS-Sia and pLBOS-Sia had no cytotoxicity to BV-2 cells, and could substantially reduce the release of pro-inflammatory factor TNF-α induced by Aβ42 in BV-2 cells, and inhibit the occurrence of neuroinflammation. In future, this novel structure of mannan oligosaccharide-sialic acid conjugate can be potentially used to for the development of glycoconjugates against AD targeting Aβ.
Collapse
Affiliation(s)
- Jianrong Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Congsheng Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Tiantian Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Hongtao Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
9
|
Zhang B, Zhu T, Liu L, Yuan L. In vitro electrochemical detection of the degradation of amyloid-β oligomers. J Colloid Interface Sci 2023; 629:156-165. [PMID: 36152573 DOI: 10.1016/j.jcis.2022.09.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/24/2022]
Abstract
The clearance of overloaded amyloid β (Aβ) oligomers is thought to be an attractive and potential strategy for the therapy of Alzheimer's disease (AD). A variety of strategies have already been utilized to study Aβ degradation in vitro. Here, the electrochemical detection based on direct electrooxidation of specific Tyr residues within Aβ peptide has been developed as a simple and robust approach for monitoring the oligomers' degradation. C60 was employed for photodegrading Aβ oligomers due to the generated ROS under light irradiation. The oxidation current of Tyr residues by square wave voltammetry (SWV) increased upon the Aβ degradation, confirming that the structure variation of Aβ peptide indeed influenced the exposure of those redox species to the electrode surface and final signal output. Chronoamperometric assay also found the electrooxidation of Tyr undergone an irreversible process. Additionally, the direct electrochemistry was capable of detecting the aggregation with rapid test and better sensitivity in compared with dynamic light scattering (DLS), atomic force microscopy (AFM) and thioflavin T (ThT) based fluorescence assay. Thus, this work indicated the potential application of direct electrochemistry in the in vitro measurement of Aβ degradation and clearance, providing new insights and a complementary means into the AD theranostics.
Collapse
Affiliation(s)
- Baole Zhang
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Taofeng Zhu
- Department of Pulmonary and Critical Care Medicine, Yixing Hospital Affiliated to Jiangsu University, Yixing 214200, Jiangsu, China
| | - Lei Liu
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| | - Liang Yuan
- Institute for Advanced Materials, School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|