1
|
Lupu A, Bercea M, Avadanei M, Gradinaru LM, Nita LE, Gradinaru VR. Temperature Sensitive Pluronic F127‐Based Gels Incorporating Natural Therapeutic Agents. MACROMOLECULAR MATERIALS AND ENGINEERING 2024. [DOI: 10.1002/mame.202400341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Indexed: 01/03/2025]
Abstract
AbstractPluronic F127 copolymer is used as the main component to design injectable gels for therapeutic applications. Xanthan gum is added as an excipient to improve gel properties under physiological conditions. A polyphenol bioactive compound, curcumin, is selected as therapeutic agent with beneficial effects on metabolism and many diseases. The encapsulation efficiency and stability of formulations are investigated in an aqueous environment and in acetic acid solutions. The interactions between the hydrophobic polyphenol and the polymer matrix are investigated through rheology, DLS, and FTIR spectroscopy. The viscoelasticity of gels, correlated with the network structure, is influenced by xanthan gum or acetic acid addition. FTIR analysis of curcumin incorporated into the gel provides the evidence for interaction of the phenyl rings of both keto‐enol and di‐keto tautomers with the polymeric matrix. The spherical curcumin‐encapsulated micelles provided antioxidant properties. The kinetics of curcumin release from the Pluronic F127‐based gels suggests anomalous transport phenomena controlled by diffusion through the network and hydrodynamic effects. Both gel and lyophilized form of micellar encapsulated curcumin composites exhibited good stability for long‐term storage under ambient conditions.
Collapse
Affiliation(s)
- Alexandra Lupu
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley Iasi 700487 Romania
| | - Maria Bercea
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley Iasi 700487 Romania
| | - Mihaela Avadanei
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley Iasi 700487 Romania
| | - Luiza Madalina Gradinaru
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley Iasi 700487 Romania
| | - Loredana Elena Nita
- “Petru Poni” Institute of Macromolecular Chemistry 41‐A Grigore Ghica Voda Alley Iasi 700487 Romania
| | - Vasile Robert Gradinaru
- Faculty of Chemistry Alexandru Ioan Cuza University of Iasi 11 Carol I Bd. Iasi 700506 Romania
| |
Collapse
|
2
|
Ogundare O, Tick GR, Esfahani MR, Akyol NH, Zhang Y. Laboratory-scale characterization of slow-release permanganate gel (SRP-G) for the in-situ treatment of chlorinated-solvent groundwater plumes. CHEMOSPHERE 2024; 360:142392. [PMID: 38777195 DOI: 10.1016/j.chemosphere.2024.142392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
Significant challenges remain for the remediation of chlorinated-solvent plumes in groundwater, such as trichloroethene (TCE) and tetrachloroethene (PCE). A novel slow-release permanganate gel (SRP-G) technique may show promise for the in-situ treatment (remediation) of chlorinated contaminant plumes in groundwater. A series of laboratory experiments were conducted to characterize the primary physical factors that influence SRP-G gelation processes to optimize SRP-G performance for plume treatment. Specifically, experiments were conducted to quantify gel zeta potential, particle size distribution, and viscosity to determine SRP-G gelation characteristics and processes. These experiments tested various concentrations of two SRP-G amendment solutions (NaMnO4 and KMnO4) prepared with 30-wt.% and 50-wt.% colloidal silica to determine such influences on zeta potential, particle size distribution, and viscosity. The results of this study show that SRP-G solutions with low zeta potential and relatively high pH favor more rapid SRP-G gelation. The concomitant interaction of the predominantly negatively charged colloidal silica particles and the positively charged dissociated cations (Na+ and K+) in the SRP-G solution had the effect of stabilizing charge imbalance via attraction of particles and thereby inducing a greater influence on the gelation process. Gel particle size distribution and changes in viscosity had a significant influence on SRP-G solution gelation. The addition of permanganate (NaMnO4 or KMnO4) increased the average particle size distribution and the viscosity of the SRP-G solution and decreased the overall gelation time. SRP-G amendments (NaMnO4 or KMnO4) prepared with 50-wt.% colloidal silica showed more effective gelation (and reduced gelation time) compared to SRP-G amendments prepared with 30-wt.% colloidal silica. Under the conditions of these experiments, it was determined that both the 7-wt.% NaMnO4 solution and 90 mg/L KMnO4 solution using 50-wt.% colloidal silica would be the optimal injection SRP-G solution concentrations for this in-situ treatment technique.
Collapse
Affiliation(s)
- Ojo Ogundare
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Geoffrey R Tick
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA; Santa Clara Valley Water District, Groundwater Management Unit, San Jose, CA, 95118, USA.
| | - Milad Rabbani Esfahani
- Department of Chemical and Biological Engineering, University of Alabama, Tuscaloosa, AL, 35487, USA.
| | - Nihat Hakan Akyol
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA; Department of Geological Engineering, Kocaeli University, 41380, Turkey.
| | - Yong Zhang
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487, USA.
| |
Collapse
|
3
|
Rodriguez-Loya J, Lerma M, Gardea-Torresdey JL. Dynamic Light Scattering and Its Application to Control Nanoparticle Aggregation in Colloidal Systems: A Review. MICROMACHINES 2023; 15:24. [PMID: 38258143 PMCID: PMC10819909 DOI: 10.3390/mi15010024] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 01/24/2024]
Abstract
Colloidal systems and their control play an essential role in daily human activities, but several drawbacks lead to an avoidance of their extensive application in some more productive areas. Some roadblocks are a lack of knowledge regarding how to influence and address colloidal forces, as well as a lack of practical devices to understand these systems. This review focuses on applying dynamic light scattering (DLS) as a powerful tool for monitoring and characterizing nanoparticle aggregation dynamics. We started by outlining the core ideas behind DLS and how it may be used to examine colloidal particle size distribution and aggregation dynamics; then, in the last section, we included the options to control aggregation in the chemically processed toner. In addition, we pinpointed knowledge gaps and difficulties that obstruct the use of DLS in real-world situations. Although widely used, DLS has limits when dealing with complicated systems, including combinations of nanoparticles, high concentrations, and non-spherical particles. We discussed these issues and offered possible solutions and the incorporation of supplementary characterization approaches. Finally, we emphasized how critical it is to close the gap between fundamental studies of nanoparticle aggregation and their translation into real-world applications, recognizing challenges in colloidal science.
Collapse
Affiliation(s)
- Jesus Rodriguez-Loya
- Environmental Science and Engineering Ph. D. Program, University of Texas at El Paso, El Paso, TX 79968, USA; (J.R.-L.); (M.L.)
| | - Maricarmen Lerma
- Environmental Science and Engineering Ph. D. Program, University of Texas at El Paso, El Paso, TX 79968, USA; (J.R.-L.); (M.L.)
| | - Jorge L. Gardea-Torresdey
- Environmental Science and Engineering Ph. D. Program, University of Texas at El Paso, El Paso, TX 79968, USA; (J.R.-L.); (M.L.)
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
4
|
Bayram AG, Schwarzendahl FJ, Löwen H, Biancofiore L. Motility-induced shear thickening in dense colloidal suspensions. SOFT MATTER 2023. [PMID: 37309209 DOI: 10.1039/d3sm00035d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phase transitions and collective dynamics of active colloidal suspensions are fascinating topics in soft matter physics, particularly for out-of-equilibrium systems, which can lead to rich rheological behaviours in the presence of steady shear flow. Here the role of self-propulsion in the rheological response of a dense colloidal suspension is investigated by using particle-resolved Brownian dynamics simulations. First, the combined effect of activity and shear in the solid on the disordering transition of the suspension is analyzed. While both self-propulsion and shear destroy order and melt the system if critical values are exceeded, self-propulsion largely lowers the stress barrier needed to be overcome during the transition. We further explore the rheological response of the active sheared system once a steady state is reached. While passive suspensions show a solid-like behaviour, turning on particle motility fluidises the system. At low self-propulsion, the active suspension behaves in the steady state as a shear-thinning fluid. Increasing the self-propulsion changes the behaviour of the liquid from shear-thinning to shear-thickening. We attribute this to clustering in the sheared suspensions induced by motility. This new phenomenon of motility-induced shear thickening (MIST) can be used to tailor the rheological response of colloidal suspensions.
Collapse
Affiliation(s)
- A Gülce Bayram
- FluidFrame Lab, Department of Mechanical Engineering, Bilkent University, Çankaya, 06800 Ankara, Turkey.
| | - Fabian Jan Schwarzendahl
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Hartmut Löwen
- Institut für Theoretische Physik II: Weiche Materie, Heinrich-Heine-Universität Düsseldorf, 40225 Düsseldorf, Germany.
| | - Luca Biancofiore
- FluidFrame Lab, Department of Mechanical Engineering, Bilkent University, Çankaya, 06800 Ankara, Turkey.
- Department of Mechanical Engineering, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
5
|
Frungieri G, Boccardo G, Buffo A, Karimi–Varzaneh HA, Vanni M. CFD-DEM characterization and population balance modelling of a dispersive mixing process. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Homayoonfal M, Mousavi M, Kiani H, Askari G, Desobry S, Arab-Tehrany E. Modifying the Stability and Surface Characteristic of Anthocyanin Compounds Incorporated in the Nanoliposome by Chitosan Biopolymer. Pharmaceutics 2022; 14:1622. [PMID: 36015248 PMCID: PMC9414094 DOI: 10.3390/pharmaceutics14081622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 01/25/2023] Open
Abstract
In this study, a novel approach was investigated to improve the stability of anthocyanin compounds (AC) by encapsulating them in nanoliposomes resulting from rapeseed lecithin alongside chitosan coating. The results indicate that the particle size, electrophoretic mobility, encapsulation efficiency, and membrane fluidity of nanoliposomes containing anthocyanin compounds were 132.41 nm, -3.26 µm·cm/V·S, 42.57%, and 3.41, respectively, which changed into 188.95 nm, +4.80 µm·cm/V·S, 61.15%, and 2.39 after coating with chitosan, respectively. The results also suggest improved physical and chemical stability of nanoliposomes after coating with chitosan. TEM images demonstrate the produced particles were spherical and had a nanoscale, where the existence of a chitosan layer around the nanoparticles was visible. Shear rheological tests illustrate that the flow behavior of nanoliposomes was altered from Newtonian to shear thinning following chitosan incorporation. Further, chitosan diminished the surface area of the hysteresis loop (thixotropic behavior). The oscillatory rheological tests also show the presence of chitosan led to the improved mechanical stability of nanoliposomes. The results of the present study demonstrate that chitosan coating remarkably improved encapsulation efficiency, as well as the physical and mechanical stability of nanoliposomes. Thus, coating AC-nanoliposomes with chitosan is a promising approach for effective loading of AC and enhancing their stability to apply in the pharmaceutic and food industries.
Collapse
Affiliation(s)
- Mina Homayoonfal
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science and Technology, University of Tehran, Karaj 999067, Iran; (M.H.); (M.M.); (H.K.); (G.A.)
| | - Mohammad Mousavi
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science and Technology, University of Tehran, Karaj 999067, Iran; (M.H.); (M.M.); (H.K.); (G.A.)
| | - Hossein Kiani
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science and Technology, University of Tehran, Karaj 999067, Iran; (M.H.); (M.M.); (H.K.); (G.A.)
| | - Gholamreza Askari
- Bioprocessing and Biodetection Lab (BBL), Department of Food Science and Technology, University of Tehran, Karaj 999067, Iran; (M.H.); (M.M.); (H.K.); (G.A.)
| | - Stephane Desobry
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, TSA 40602, CEDEX, 54518 Vandoeuvre-lès-Nancy, France
| | - Elmira Arab-Tehrany
- Laboratoire d’Ingénierie des Biomolécules (LIBio), Université de Lorraine, 2 Avenue de la Forêt de Haye, TSA 40602, CEDEX, 54518 Vandoeuvre-lès-Nancy, France
| |
Collapse
|