1
|
Chen G, Zhang X, Gu Y, Jian J, Zhang Q, Wang Q, Zheng D, Xia L, Wang J, Miao H, Yuan J. Efficiently Re-Utilizing the High-Value Metals in the Spent LiNi 1-x-yMn xCo yO 2 for the Trifunctional Electrocatalysts by a Novel One-Pot Method. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411337. [PMID: 39821456 DOI: 10.1002/smll.202411337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/09/2025] [Indexed: 01/19/2025]
Abstract
Traditional hydrometallurgy methods for recycling the spent lithium-ion battery materials face some challenges, including the complex processes, and difficulties in separating Ni/Co/Mn. To address these issues, this work proposes a simple one-pot method to achieve a high Li leaching efficiency (99.2%) and simultaneously transform the majority of Ni (99.5%) and Co (99.9%) into a high-performance multifunctional electrocatalyst (LNMCO-HS-180). LNMCO-HS-180 with single-phase structure shows a hollow microsphere morphology. LNMCO-HS-180 can efficiently catalyze the oxygen reduction (ORR), oxygen evolution (OER), and methanol oxidation reactions (MOR), with the ORR half-wave potential of 0.732 V and, OER potential of 1.469 V at 10 mA cm-2. This is mainly attributed to the unique hollow microsphere morphology, suitable Ni/Co/Mn oxidation states, and reduction in the free energy barriers for OER and ORR. Additionally, LNMCO-HS-180 exhibits an MOR potential of only 1.43 V at 100 mA cm-2 and excellent formate selectivity (>99%).
Collapse
Affiliation(s)
- Genman Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Xin Zhang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Yaozong Gu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315211, P. R. China
| | - Jiafang Jian
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Qiuju Zhang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315211, P. R. China
| | - Qin Wang
- Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo, 315211, P. R. China
| | - Da Zheng
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315211, P. R. China
| | - Lan Xia
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Jianxin Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315211, P. R. China
| | - He Miao
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Jinliang Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
2
|
Gao S, Li M, Li N, Zhang L, Liu Q, Wang X, Hu G. Porous carbon-nanostructured electrocatalysts for zinc-air batteries: from materials design to applications. NANOSCALE ADVANCES 2024; 7:60-88. [PMID: 39600825 PMCID: PMC11586858 DOI: 10.1039/d4na00847b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Zinc-air batteries (ZABs) are pivotal in the evolution of sustainable energy storage solutions, distinguished by their high energy density and minimal environmental footprint. The oxygen electrode, which relies on sophisticated porous carbon materials, is critical to operational efficiency. This review scrutinizes oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) processes in ZABs through advanced porous carbon applications. It delves into innovative synthesis techniques such as templating, chemical vapor deposition, and self-assembly that tailor pore structures for peak performance. The interactions between catalytic sites and carbon nanostructures, which significantly boost electrochemical performance, are highlighted. The manuscript discusses future strategies for overcoming current challenges by advancing catalytic efficiency and electrode design, emphasizing the integration of nano-engineering and materials science to foster ZABs with superior energy capacity and adaptability. Additionally, the review projects how ongoing research into carbon material properties could unlock new applications in other energy systems, potentially broadening the scope of ZAB technology. This paper integrates recent advancements in porous carbon materials, offering pivotal insights for next-generation high-performance ZAB development.
Collapse
Affiliation(s)
- Sanshuang Gao
- Institute of Information Technology, Shenzhen Institute of Information Technology Shenzhen 518172 China
| | - Maolin Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University Kunming 650504 China
- School of Materials Science and Engineering, Anhui University of Science and Technology Huainan 232001 China
| | - Nianpeng Li
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University Kunming 650504 China
| | - Lei Zhang
- School of Materials Science and Engineering, Anhui University of Science and Technology Huainan 232001 China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University Chengdu 610106 China
| | - Xinzhong Wang
- Institute of Information Technology, Shenzhen Institute of Information Technology Shenzhen 518172 China
| | - Guangzhi Hu
- Institute for Ecological Research and Pollution Control of Plateau Lakes, School of Ecology and Environmental Science, Yunnan University Kunming 650504 China
| |
Collapse
|
3
|
Xu X, Li X, Lu W, Sun X, Huang H, Cui X, Li L, Zou X, Zheng W, Zhao X. Collective Effect in a Multicomponent Ensemble Combining Single Atoms and Nanoparticles for Efficient and Durable Oxygen Reduction. Angew Chem Int Ed Engl 2024; 63:e202400765. [PMID: 38349119 DOI: 10.1002/anie.202400765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Indexed: 03/01/2024]
Abstract
Metal single-atom catalysts represent one of the most promising non-noble metal catalysts for the oxygen reduction reaction (ORR). However, they still suffer from insufficient activity and, particularly, durability for practical applications. Leveraging density functional theory (DFT) and machine learning (ML), we unravel an unexpected collective effect between FeN4OH sites, CeN4OH motifs, Fe nanoparticles (NPs), and Fe-CeO2 NPs. The collective effect comprises differently-weighted electronic and geometric interactions, whitch results in significantly enhanced ORR activity for FeN4OH active sites with a half-wave potential (E1/2) of 0.948 V versus the reversible hydrogen electrode (VRHE) in alkaline, relative to a commercial Pt/C (E1/2, 0.851 VRHE). Meanwhile, this collective effect endows the shortened Fe-N bonds and the remarkable durability with negligible activity loss after 50,000 potential cycles. The ML was used to understand the intricate geometric and electronic interactions in collective effect and reveal the intrinsic descriptors to account for the enhanced ORR performance. The universality of collective effect was demonstrated effective for the Co, Ni, Cu, Cr, and Mn-based multicomponent ensembles. These results confirm the importance of collective effect to simultaneously improve catalytic activity and durability.
Collapse
Affiliation(s)
- Xiaochun Xu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xinyi Li
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Wenting Lu
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xiaoyuan Sun
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Hong Huang
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xiaoqiang Cui
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Lu Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaoxin Zou
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Weitao Zheng
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| | - Xiao Zhao
- Key Laboratory of Automobile Materials of MOE, School of Materials Science and Engineering, Jilin University, Changchun, 130012, China
| |
Collapse
|
4
|
Chen G, Yuan B, Dang J, Xia L, Zhang C, Wang Q, Miao H, Yuan J. Recycling the Spent LiNi 1- x - yMn xCo yO 2 Cathodes for High-Performance Electrocatalysts toward Both the Oxygen Catalytic and Methanol Oxidation Reactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306967. [PMID: 37992250 DOI: 10.1002/smll.202306967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/25/2023] [Indexed: 11/24/2023]
Abstract
The traditional recycling methods of the spent lithium ion batteries (LIBs) involve the intricate and cumbersome steps. This work proposes a facile method of acid leaching followed by the sulfurization treatment to achieve the high Li leaching efficiency, and obtain high-performance multi-function electrocatalysts for oxygen reduction (ORR), oxygen evolution (OER), and methanol oxidation reactions (MOR) from the spent LIB ternary cathodes. By this method, the Li leaching efficiency from the spent LIB ternary cathode can reach 98.3%, and the transition metal sulfide heterostructures (LNMCO-H-450S) consisting MnS, NiS2, and NiCo2S4 phases can be obtained. LNMCO-H-450S shows the superior bifunctional oxygen catalytic activities with ORR half-wave potential of 0.763 V and OER potential at 10 mA cm-2 of 1.561 V, surpassing most of the state-of-the-art electrocatalysts. LNMCO-H-450S also demonstrates the superior MOR catalytic activity with the potential at 100 mA cm-2 being 1.37 V. Using LNMCO-H-450S as the oxygen catalyst, this work can construct the aqueous and solid-state zinc-air batteries with high power density of 309 and 257 mW cm-2, respectively. This work provides a promising strategy for the efficient recovery of Li, and reutilization of Ni, Co, and Mn from the spent LIB ternary cathodes.
Collapse
Affiliation(s)
- Genman Chen
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Bingen Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Jiaxin Dang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Lan Xia
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Chunfei Zhang
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Qin Wang
- Department of Microelectronic Science and Engineering, Faculty of Science, Ningbo University, Ningbo, 315211, P. R. China
| | - He Miao
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| | - Jinliang Yuan
- Faculty of Maritime and Transportation, Ningbo University, Ningbo, 315211, P. R. China
| |
Collapse
|
5
|
Zhou G, Chen K, Liang G, Long J. Confined covalent organic framework anchored Fe sites derived highly uniform electrocatalysts for rechargeable aqueous and solid-state Zn-air batteries. J Colloid Interface Sci 2023; 651:794-804. [PMID: 37572615 DOI: 10.1016/j.jcis.2023.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/30/2023] [Accepted: 08/05/2023] [Indexed: 08/14/2023]
Abstract
Exploiting clean, highly efficient energy storage and conversion device like Zn-air battery is of significance for alleviating the energy and environmental crises of this society. Metal organic coordination polymers/frameworks have been regarded as ideal templates to synthesize non-noble metal catalysts for a long time. However, the high density of metal nodes inevitably leads to the heavy aggregation of metal nanoparticles during thermolysis transformation process, which greatly hinders the maximizing of electrochemical performances. Herein, covalent organic framework (COF) has been employed to anchor the quantificational Fe ions (COF-Fe) and then confined into the macropores of g-C3N4 to improve the dispersion of metal active sites and avoid severe aggregation during high temperature pyrolysis. After calcination, the metal nanoparticles highly dispersed Fe-CFN catalysts can be obtained. The optimal Fe-CFN-800 catalysts exhibit excellent ORR and OER performances with the potential difference between ORR and OER of merely 0.723 V. Moreover, experimental way and DFT theoretical calculations are also employed to disclose the reaction mechanism. Finally, the all-solid-state and aqueous Zn-air batteries assembled with the optimized Fe-CFN-800 as cathode present excellent performances with high peak power density, flexible rate performance, strong discharge stability and long-term charge-discharge cycling performance.
Collapse
Affiliation(s)
- Guangliang Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, PR China
| | - Keyu Chen
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, PR China
| | - Guangming Liang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, PR China
| | - Jilan Long
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637000, PR China.
| |
Collapse
|
6
|
Jiang S, Lv T, Peng Y, Pang H. MOFs Containing Solid-State Electrolytes for Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206887. [PMID: 36683175 PMCID: PMC10074139 DOI: 10.1002/advs.202206887] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/02/2023] [Indexed: 06/17/2023]
Abstract
The use of metal-organic frameworks (MOFs) in solid-state electrolytes (SSEs) has been a very attractive research area that has received widespread attention in the modern world. SSEs can be divided into different types, some of which can be combined with MOFs to improve the electrochemical performance of the batteries by taking advantage of the high surface area and high porosity of MOFs. However, it also faces many serious problems and challenges. In this review, different types of SSEs are classified and the changes in these electrolytes after the addition of MOFs are described. Afterward, these SSEs with MOFs attached are introduced for different types of battery applications and the effects of these SSEs combined with MOFs on the electrochemical performance of the cells are described. Finally, some challenges faced by MOFs materials in batteries applications are presented, then some solutions to the problems and development expectations of MOFs are given.
Collapse
Affiliation(s)
- Shu Jiang
- Interdisciplinary Materials Research Center, Institute for Advanced StudyChengdu UniversityChengdu610106P. R. China
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Tingting Lv
- Interdisciplinary Materials Research Center, Institute for Advanced StudyChengdu UniversityChengdu610106P. R. China
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Yi Peng
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou UniversityYangzhouJiangsu225009P. R. China
| |
Collapse
|
7
|
Poonia K, Patial S, Raizada P, Ahamad T, Parwaz Khan AA, Van Le Q, Nguyen VH, Hussain CM, Singh P. Recent advances in Metal Organic Framework (MOF)-based hierarchical composites for water treatment by adsorptional photocatalysis: A review. ENVIRONMENTAL RESEARCH 2023; 222:115349. [PMID: 36709022 DOI: 10.1016/j.envres.2023.115349] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Architecting a desirable and highly efficient nanocomposite for applications like adsorption, catalysis, etc. has always been a challenge. Metal Organic Framework (MOF)-based hierarchical composite has perceived popularity as an advanced adsorbent and catalyst. Hierarchically structured MOF material can be modulated to allow the surface interaction (external or internal) of MOF with the molecules of interest. They are well endowed with tunable functionality, high porosity, and increased surface area epitomizing mass transfer and mechanical stability of the fabricated nanostructure. Additionally, the anticipated optimization of nanocomposite can only be acquired by a thorough understanding of the synthesis techniques. This review starts with a brief introduction to MOF and the requirement for advanced nanocomposites after the setback faced by conventional MOF structures. Further, we discussed the background of MOF-based hierarchical composites followed by synthetic techniques including chemical and thermal treatment. It is important to rationally validate the successful nanocomposite fabrication by characterization techniques, an overview of challenges, and future perspectives associated with MOF-based hierarchically structured nanocomposite.
Collapse
Affiliation(s)
- Komal Poonia
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Shilpa Patial
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Pankaj Raizada
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| | - Tansir Ahamad
- Department of Chemistry, College of Science, King Saud University, Saudi Arabia.
| | - Aftab Aslam Parwaz Khan
- Center of Excellence for Advanced Materials Research, King Abdulaziz University, P. O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Quyet Van Le
- Faculty of Department of Materials Science and Engineering, Korea University, 145, Anam13 Ro Seongbuk-gu, Seoul, 02841, South Korea.
| | - Van-Huy Nguyen
- Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (CARE), Kelambakkam, Kanchipuram District, 603103, Tamil Nadu, India.
| | - Chaudhery Mustansar Hussain
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, 07102, USA.
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
8
|
Xu T, Long J, Wang L, Chen K, Chen J, Gou X. Core-shell template derived porous 3D-Fe/Fe2O3@NSC composites as high performance catalysts for aqueous and solid-state rechargeable Zn-air batteries. J Electroanal Chem (Lausanne) 2023. [DOI: 10.1016/j.jelechem.2023.117203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|