1
|
Zhou W, Jiang J, Li W, Huang Z, Zhang M, Jin J, Yu Z, Xie J. Guiding nitrogen doped vanadium pentoxide nanoclusters on cobalt sulfide nano-flakiness as stable seamless interface anode toward highly energy density and durable asymmetric supercapacitors. J Colloid Interface Sci 2025; 679:531-543. [PMID: 39378688 DOI: 10.1016/j.jcis.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/06/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Interaction of the interface-heterostructures is crucial to rapid ionic conductivity and highly energy density of electrode materials toward supercapacitors. Herein, a novel anode heterostructure is synthesized using cobalt sulfide (CoS) nanoflowers as a substrate for composite nitrogen doped vanadium pentoxide (denoted as N-V2O5@CoS) by combination of hydrothermal and calcination method. As expected, the N-V2O5@CoS electrode possesses superhigh specific surface area that significantly enhances the specific capacitance, and its unique porous interconnected structure not only reduces the volume effect during the cycles, but also greatly enhances the conductivity of electron transfer. The as-prepared N-V2O5@CoS electrode has a specific capacitance of up to 2413.6F/g at a current density of 1 A/g, and can still maintain 87.51 % of the initial capacitance after 5,000 cycles at a high current density of 10 A/g. More importantly, the partial density of states (PDOS) ares obtained through theoretical calculations reveal that the interaction of heterogeneous interfaces is contributed by the p-orbitals of C, O and S and d-orbitals of V and Co. In addition, asymmetric supercapacitor (ASC) with N-V2O5@CoS as the positive electrode and activated carbon (AC) as the negative electrode has a high voltage of 1.7 V, which achieves an outstanding energy density of 71.6 W h kg-1 at a power density of 849.8 W kg-1, showing excellent cycle stability (retain 90.6 % of the initial capacitance after 10,000 charge/discharge cycles). This paper offers novel paradigm for the doping of metal oxides and the development of heterostructures, which provides support for their use as advanced energy storage materials.
Collapse
Affiliation(s)
- Weitong Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Junjie Jiang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Woyuan Li
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhiye Huang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Mingmei Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China.
| | - Jiayang Jin
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Zhihao Yu
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China
| | - Jimin Xie
- Jiangsu Jiangke Graphene Research Institute Co., Ltd., 298 Nanxu Road, Zhenjiang 212021, China
| |
Collapse
|
2
|
Liu Y, Tian M, Wang Z, Wang C, Cui L, Xu J, Liu J. Core-shell structured MgCo 2O 4@Ni(OH) 2 nanorods as electrode materials for high-performance asymmetric supercapacitors. J Colloid Interface Sci 2025; 678:130-140. [PMID: 39182387 DOI: 10.1016/j.jcis.2024.08.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/09/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
In the field of energy storage, supercapacitors have received extensive attention in recent years. However, achieving the expected electrochemical performance and energy density of supercapacitors is still a huge challenge. The design and synthesis of binder-free composite electrode with core-shell structure is an effective strategy to improve the electrochemical performance of supercapacitors. In this paper, a heterogeneous core-shell structured and binder-free electrode material MgCo2O4@Ni(OH)2 (MCO@NH) grown on nickel foam (NF) is prepared by a simple hydrothermal and oil bath method. The unique core-shell structure makes the MCO@NH have a large specific surface area, which provides abundant active sites for ion transport and storage, thereby improving the electrochemical performance. The MCO@NH/NF nanocomposite demonstrates a high specific capacitance (Cs) of 1583 F g-1 at 1 A/g. A solid-state asymmetric supercapacitor (ASC) assembled with MCO@NH/NF and active carbon (AC) exhibits excellent energy density (45 Wh kg-1 at 457.5 W kg-1) and outstanding capacitance (89.51 %) and coulombic efficiency (97.8 %) after 12,000 cycles, evidencing its good operation stability and potential practical applications. Therefore, the prepared core-shell MCO@NH/NF electrode can be a promising candidate for energy storage devices.
Collapse
Affiliation(s)
- Yawen Liu
- College of Material Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Miao Tian
- College of Material Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Zixuan Wang
- College of Materials Science and Engineering, Linyi University, Linyi 276000, Shandong, China
| | - Chunxiao Wang
- College of Material Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Liang Cui
- College of Materials Science and Engineering, Linyi University, Linyi 276000, Shandong, China.
| | - Jiangtao Xu
- College of Material Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China
| | - Jingquan Liu
- College of Material Science and Engineering, Qingdao University, Qingdao 266071, Shandong, China; College of Materials Science and Engineering, Linyi University, Linyi 276000, Shandong, China.
| |
Collapse
|
3
|
Gerard O, Ramesh S, Ramesh K, Numan A, Norhaffis Mustafa M, Khalid M, Ramesh S, Tiong SK. Evaluation of the effect of precursor ratios on the electrochemical performances of binder-free NiMn-phosphate electrodes for supercapattery. J Colloid Interface Sci 2024; 667:585-596. [PMID: 38657542 DOI: 10.1016/j.jcis.2024.04.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/01/2024] [Accepted: 04/14/2024] [Indexed: 04/26/2024]
Abstract
Binary metal phosphate electrodes have been widely studied for energy storage applications due to the synergistic effects of two different transition elements that able to provide better conductivity and stability. Herein, the battery-type binder-free nickel-manganese phosphate (NiMn-phosphate) electrodes were fabricated with different Ni:Mn precursor ratios via microwave-assisted hydrothermal technique for 5 min at 90 °C. Overall, NiMn3P electrode (Ni:Mn = 1:3) showed an outstanding electrochemical performance, displaying the highest specific (areal) capacity at 3 A/g of 1262.4 C/g (0.44 C/cm2), and the smallest charge transfer resistance of 108.8 Ω. The enhanced performance of NiMn3P electrode can be ascribed to the fully grown amorphous nature and small-sized flake and flower structures of NiMn3P electrode material on the nickel foam (NF) surface. This configuration offered a higher number of active sites and a larger exposed area, facilitating efficient electrochemical reactions with the electrolyte. Consequently, the NiMn3P//AC electrode combination was chosen to further investigate its performance in supercapattery. The NiMn3P//AC supercapattery exhibited remarkable energy density of 105.4 Wh/kg and excellent cyclic stability with 84.7% retention after 3000 cycles. These findings underscored the superior electrochemical performance of the battery-type binder-free NiMn3P electrode, and highlight its potential for enhancing the overall performance of supercapattery.
Collapse
Affiliation(s)
- Ong Gerard
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia
| | - S Ramesh
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia; Department of Chemistry, Saveetha School of Engineering, Institute of Medical and Technical Science, Saveetha University, Chennai 602105, Tamil Nadu, India.
| | - K Ramesh
- Centre for Ionics University of Malaya, Department of Physics, Faculty of Science, Universiti Malaya, 50603 Kuala Lumpur, Malaysia
| | - Arshid Numan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Muhammad Norhaffis Mustafa
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Mohammad Khalid
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia; Uttaranchal University, Dehradun 248007, Uttarakhand, India; Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - S Ramesh
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia; Centre of Advanced Manufacturing and Material Processing, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - S K Tiong
- Institute of Sustainable Energy, Universiti Tenaga Nasional, Jalan Ikram-Uniten, 43000 Kajang, Selangor, Malaysia.
| |
Collapse
|
4
|
Chen H, Bao E, Sun H, Ren X, Han X, Wang Y, Zhang Z, Luo C, Xu C. Sonochemical synthesis of CoNi layered double hydroxide as a cathode material for assembling high performance hybrid supercapacitor. J Colloid Interface Sci 2024; 664:117-127. [PMID: 38460377 DOI: 10.1016/j.jcis.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/11/2024]
Abstract
Fabricating battery-type electrode materials with large specific surface area and mesopores is an efficient method for enhancing the electrochemical performance of supercapacitors. This method may provide more active sites for Faradic reactions and shorten the ion-diffusion paths. In this study, the CoNi layered double hydroxides (LDHs) with the morphology of nanoflowers and nanoflakes were prepared in solutions with pH values of 7.5 (CoNi LDH-7.5) and 8.5 (CoNi LDH-8.5) via a simple sonochemical approach. These CoNi LDHs possessed large specific surface areas and favourable electrochemical properties. The CoNi LDH-7.5 delivered a specific capacity of 740.8C/g at a current density of 1 A/g, surpassing CoNi LDH-8.5 with 668.1C/g. The hybrid supercapacitor (HSC) was assembled with activated carbon as the anode and CoNi LDH as the cathode to assess its practical application potential in the field of electrochemical energy storage. The CoNi LDH-7.5//AC HSC achieved the highest energy density of 35.6 W h kg-1 at a power density of 781.1 W kg-1. In addition, both HSCs exhibited little capacity decay over 5,000 cycles at a high current load of 8 A/g. These electrochemical properties of CoNi LDHs make them promising candidates for battery-type electrode materials. The current sonochemical method is simple and can be applied to the preparation of other LDHs-based electrode materials with favourable electrochemical performance.
Collapse
Affiliation(s)
- Huiyu Chen
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China.
| | - Enhui Bao
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Hongyan Sun
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Xianglin Ren
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Xinxin Han
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Yue Wang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Zheyu Zhang
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Chunwang Luo
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| | - Chunju Xu
- School of Materials Science and Engineering, North University of China, Taiyuan 030051, China
| |
Collapse
|
5
|
Joseph A, Mathew A, Perikkathra S, Thomas T. Recent advances in and perspectives on binder materials for supercapacitors–A review. Eur Polym J 2024; 210:112941. [DOI: 10.1016/j.eurpolymj.2024.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
6
|
Wang J, Zhang H, Duan H, Zhao H, Qi J, Ma B, Fan H. Boosting the Electrochemical Storage Properties of Co 3O 4 Nanowires by the Mn Doping Strategy with Appropriate Mn Doping Concentrations. ACS OMEGA 2024; 9:6955-6964. [PMID: 38371786 PMCID: PMC10870386 DOI: 10.1021/acsomega.3c08650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 02/20/2024]
Abstract
High specific capacitance, high energy density, and high power density have always been important directions for the improvement of electrode materials for supercapacitors. In this paper, Co3O4 nanowire arrays with various Mn doping concentrations (Mn:Co molar ratio = 1:11, 1:5, 1:2) directly grown on nickel foam (NF) were prepared by a simple hydrothermal method and annealing process. The influence of Mn doping on the morphology, structure, and electrochemical behaviors of Co3O4 was investigated. The results show that partial substitution of Co ions with Mn ions in the spinel structure does not change the nanowire morphology of pure Co3O4 but increases the lattice parameter and decreases the crystallinity of cobalt oxide. Electrochemical measurements showed that Mn doping in Co3O4 could effectively enhance the redox activity, especially Co3O4 with a Mn doping ratio of 1:5, which exhibits the most excellent electrochemical performance, with the maximum specific capacitance of 1210.8 F·g-1 at 1 A·g-1 and a rate capability of 33.0% at 30 A·g-1. The asymmetric supercapacitor (ASC) device assembled with the optimal Mn-Co3O4 (1:5) and activated carbon (AC) electrode performs a high specific capacitance of 105.8 F·g-1, a high energy density of 33 Wh·kg-1 at a power density of 748.1 W·kg-1, and a capacitance retention of 60.2% after 5000 cycles. This work indicates that an appropriate Mn doping concentration in the Co3O4 lattice structure will have great potential in rationalizing the design of spinel oxides for efficient electrochemical performance.
Collapse
Affiliation(s)
- Jun Wang
- College
of Mechatronics Engineering, North University
of China, Taiyuan 030051, P. R. China
| | - Huifang Zhang
- College
of Mechatronics Engineering, North University
of China, Taiyuan 030051, P. R. China
| | - Haoyan Duan
- China
North Standardization Center, Beijing 100089, P.R. China
| | - Heming Zhao
- College
of Mechatronics Engineering, North University
of China, Taiyuan 030051, P. R. China
| | - Juncheng Qi
- School
of Information and Communication Engineering, North University of China, Taiyuan 030051, P. R. China
| | - Boxiang Ma
- College
of Mechatronics Engineering, North University
of China, Taiyuan 030051, P. R. China
| | - Honghui Fan
- College
of Mechatronics Engineering, North University
of China, Taiyuan 030051, P. R. China
| |
Collapse
|
7
|
Attia MM, Bahrawy AA, El-Rabiei MM, Mohamed HSH, Khabiri G. Hierarchically crystalline copper borate nanosheets as a freestanding electrode for a hybrid supercapacitor. J Colloid Interface Sci 2024; 655:335-345. [PMID: 37948807 DOI: 10.1016/j.jcis.2023.11.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/12/2023]
Abstract
In this study, we have suggested a straightforward approach to fabricating a binder-free electrode of hierarchically crystalline copper borate (Cu-Bi) nanosheets grown on nickel foam using the Successive Ionic Layer Adsorption Reaction (SILAR) method. The best-performing electrode shows a remarkable specific capacitance (Cs) of 2002 Fg-1 at 1 Ag-1 and Cs retention of 85 % for 10,000 GCD cycles. The assembled CB/NF-2//AC device exhibits high cycling stability and achieves a high energy of 52.2 Whkg-1 at a power density of 2622.4 Wkg-1. Remarkably, it reached 152.7 Fg-1 at 2 Ag-1, and the device still has a high capacitance retention of 85 % for 10,000 cycles. This remarkable electrochemical activity could be attributed to: (i) the inherent defects of the prepared electrode via the existence of borates, providing straightforward interaction between the electrolyte and the active species; (ii) designing the hierarchical architecture that could provide a porous nanosheet structure, which generates accessible active sites for quick ion transport, boosting the Cs; (iii) the formation of crystalline Cu-Bi nanosheets, resulting in high stability and superior electrochemical performance compared to the previous amorphous borides; and (iv) the hybridization between the B 2p state and the multiple d-orbitals of transition metals, increasing the electron flow between the atoms. The current work suggests that the growth of hierarchically crystalline Cu-Bi on Ni foam using a low-cost and simple procedure could provide a practical approach to designing hybrid supercapacitors with outstanding electrochemical performance.
Collapse
Affiliation(s)
- Menna M Attia
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Ahmed A Bahrawy
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - M M El-Rabiei
- Chemistry Department, Faculty of Science, Fayoum University, Fayoum, Egypt
| | - Hemdan S H Mohamed
- Physics Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| | - Gomaa Khabiri
- Physics Department, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt.
| |
Collapse
|
8
|
Zhang J, Fang Y, Chen Y, Zhang X, Xiao H, Zhao M, Zhao C, Ma X, Hu T, Luo E, Jia J, Wu H. In-situ fabrication of bimetallic FeCo 2O 4-FeCo 2S 4 heterostructure for high-efficient alkaline freshwater/seawater electrolysis. J Colloid Interface Sci 2024; 653:821-832. [PMID: 37769361 DOI: 10.1016/j.jcis.2023.09.126] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 09/30/2023]
Abstract
Rational construction of bifunctional electrocatalysts with long-term stability and high electrocatalytic activity is of great importance, but it is challenging to obtain highly efficient non-precious metal-based catalysts for overall seawater electrolysis. Herein, a nickel foam (NF) self-supporting CoFe-layered double hydroxide (CoFe-LDH/NF) was directly converted into FeCo2O4-FeCo2S4 heterostructure via hydrothermal method in 50 mM Na2S solution, instead of FeCo2O4@FeCo2S4 core-shell structure. The FeCo2O4-FeCo2S4 heterojunction shows nanosheets structure with rough surface (the thickness of ∼ 198.9 nm), which provides rich oxide/sulfide interfaces, high electrochemical active area, a large number of active sites, as well as fast charge and mass transfer. In 1.0 M KOH solution, 1.0 M KOH + 0.5 M NaCl, and alkaline natural seawater, the FeCo2O4-FeCo2S4 heterojunction exhibits eminently electrocatalytic performance, with overpotentials of η-100 = 225 mV, η-100 = 233 mV, and η-100 = 238 mV for OER, as well as η-100 = 271 mV, η-100 = 273 mV, and η-100 = 277 mV for HER, respectively. Furthermore, self-supporting FeCo2O4-FeCo2S4 electrode (FeCo2O4-FeCo2S4/NF) as the cathode and anode of an electrolyzer exhibits a lower cell voltage of E-100 = 1.75 V in alkaline seawater than those of FeCo2S4/NF (1.77 V), CoFe-LDH/NF (1.87 V), and FeCo2O4/NF (1.91 V). Specifically, FeCo2O4-FeCo2S4 electrolyzer can stably produce hydrogen for over 48 h in alkaline freshwater/seawater electrolyte. These outstanding electrocatalytic performances and corrosion resistance to salty-water can be attributed to the surface reconstruction behavior of the FeCo2O4-FeCo2S4/NF catalyst during OER, which leads to the in-situ formation of metal oxyhydroxides. In particular, the FeCo2O4-FeCo2S4 heterojunction is also very competitive among most state-of-the-art non-noble metal-based catalysts, whether in KOH or alkaline salty-water electrolytes.
Collapse
Affiliation(s)
- Junming Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Yingjian Fang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Yao Chen
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Xiaojie Zhang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - He Xiao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Man Zhao
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Chaoyue Zhao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiongfeng Ma
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Tianjun Hu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| | - Ergui Luo
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China.
| | - Haishun Wu
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemistry and Materials Science, Shanxi Normal University, Taiyuan 030032, China
| |
Collapse
|
9
|
Wang B, Zhang X, Zhou J, Wang X, Tan F, Xu J. Controllable synthesis of Fe 3C-reinforced petal-like lignin microspheres with boosted electrochemical performance and its application in high performance supercapacitors. Int J Biol Macromol 2023; 251:126325. [PMID: 37579896 DOI: 10.1016/j.ijbiomac.2023.126325] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
One more effective measure to solve the energy crisis caused by the shortage of fossil energy is to convert natural renewable resources into high-value chemical products for electrochemical energy storage. Lignin has broad application prospects in this field. In this paper, three kinds of lignin with different molecular weights were obtained by the ethanol/water grading of Kraft lignin (KL). Then, different surface morphology lignin microspheres were prepared by spray drying. Finally, petal-like microspheres were successfully prepared by mixing and grinding the above four kinds of surface morphology lignin microspheres with potassium ferrate and cyanogen chloride and carbonizing at 800 °C and were later used as electrode materials for supercapacitors. Compared with the other microspheres, LMS-F3@Fe3C has the highest specific surface area (1041.42 m2 g-1), the smallest pore size (2.36 nm) and the largest degree of graphitization (ID/IG = 1.06). At a current density of 1 A g-1, the maximum specific capacitance is 786.7 F g-1. At a power density of 1000 W kg-1, the high energy density of 83.3 Wh kg-1 is displayed. This work provides a novel approach to the modulation of surface morphology and structure of lignin microspheres.
Collapse
Affiliation(s)
- Bo Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaohan Zhang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jinghui Zhou
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengzhi Tan
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jingyu Xu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
10
|
Lee DH, Baek J, Kim DH, Roh JW, Kim J, Lee D. Three-dimensional ternary Ni xCu yZn z(CO 3)(OH) 2 electrodes for supercapacitors: electrochemical properties and applications. Dalton Trans 2023; 52:3333-3343. [PMID: 36807449 DOI: 10.1039/d3dt00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Transition metal-based binary and ternary compound arrays were directly grown on a porous Ni foam substrate using a facile one-step hydrothermal method. Transition metals are considered ideal electrode materials for faradaic capacitors because they exhibit a wide range of oxidation states enabling effective redox charge transfer. Furthermore, compounds in which two or more transition metals react can help increase the number of active sites for charge-discharge reactions and provide more valence changes for improved charge transfer. In this work, we fabricated ternary electrodes with Ni, Cu, and Zn ions, exhibiting a larger surface area and higher entropy than those made with binary compounds. The NixCuyZnz-based ternary electrode had a shorter diffusion path for the electrolyte ions owing to its larger surface area. Ternary compounds can increase the entropy of the electrode because of the reaction between atoms of different sizes, bringing about a synergistic effect for high characteristic electrochemical values. The optimized NixCuyZnz(CO3)(OH)2 compound showed a maximum specific capacity of 344 mA h g-1 at a current density of 3 A g-1, which was remarkably higher than that of the binary electrode, and a cycling stability of 84.9% after 5000 cycles. An asymmetric supercapacitor produced with this compound as the positive electrode and graphene as the negative electrode exhibited a high energy density of 36.2 W h kg-1 at a power density of 103.1 W kg-1 and a current density of 2 A g-1. The asymmetric supercapacitor fabricated using the NixCuyZnz(CO3)(OH)2 compound as the positive electrode exhibited excellent electrical properties when used in an illuminated LED device.
Collapse
Affiliation(s)
- Dong Hyun Lee
- Division of Nanotechnology, DGIST, 333 Techno Jungang-daero, Daegu 42988, Republic of Korea. .,Regional Leading Research Center for Smart Energy System, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Juyoung Baek
- Division of Nanotechnology, DGIST, 333 Techno Jungang-daero, Daegu 42988, Republic of Korea.
| | - Dong Hwan Kim
- Division of Nanotechnology, DGIST, 333 Techno Jungang-daero, Daegu 42988, Republic of Korea.
| | - Jong Wook Roh
- Regional Leading Research Center for Smart Energy System, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jeongmin Kim
- Division of Nanotechnology, DGIST, 333 Techno Jungang-daero, Daegu 42988, Republic of Korea.
| | - Damin Lee
- Division of Nanotechnology, DGIST, 333 Techno Jungang-daero, Daegu 42988, Republic of Korea. .,Regional Leading Research Center for Smart Energy System, Kyungpook National University, Daegu 41566, Republic of Korea.
| |
Collapse
|
11
|
Ren X, Bao E, Liu X, Xiang Y, Xu C, Chen H. Advanced Hybrid Supercapacitors Assembled With Beta-Co(OH)2 Microflowers and Microclews as High-performance Cathode Materials. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
12
|
Hounkanrin SE, Guo Z, Luo J. Microwave-synthesized Bismuth Oxide/Activated Carbon felt composite as electrode for ultra-high supercapacitors performance. INT J ELECTROCHEM SC 2023. [DOI: 10.1016/j.ijoes.2023.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
13
|
Chettiannan B, Srinivasan AK, Arumugam G, Shajahan S, Haija MA, Rajendran R. Incorporation of α-MnO 2 Nanoflowers into Zinc-Terephthalate Metal-Organic Frameworks for High-Performance Asymmetric Supercapacitors. ACS OMEGA 2023; 8:6982-6993. [PMID: 36844521 PMCID: PMC9948164 DOI: 10.1021/acsomega.2c07808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Herein, we report the synthesis of α-MnO2 nanoflower-incorporated zinc-terephthalate MOFs (MnO2@Zn-MOFs) via the conventional solution phase synthesis technique as an electrode material for supercapacitor applications. The material was characterized by powder-X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy techniques. The prepared electrode material exhibited a specific capacitance of 880.58 F g-1 at 5 A g-1, which is higher than the pure Zn-BDC (610.83 F g-1) and pure α-MnO2 (541.69 F g-1). Also, it showed a 94% capacitance retention of its initial value after 10,000 cycles at 10 A g-1. The improved performance is attributed to the increased number of reactive sites and improved redox activity due to MnO2 inclusion. Moreover, an asymmetric supercapacitor assembled using MnO2@Zn-MOF as the anode and carbon black as the cathode delivered a specific capacitance of 160 F g-1 at 3 A g-1 with a high energy density of 40.68 W h kg-1 at a power density of 20.24 kW kg-1 with an operating potential of 0-1.35 V. The ASC also exhibited a good cycle stability of 90% of its initial capacitance.
Collapse
Affiliation(s)
- Balaji Chettiannan
- Department
of Physics, Periyar University, Salem 636011, Tamil Nadu, India
| | | | - Gowdhaman Arumugam
- Department
of Physics, Periyar University, Salem 636011, Tamil Nadu, India
| | - Shanavas Shajahan
- Department
of Chemistry, Khalifa University, P.O. Box, 127788, Abu Dhabi 127788, United Arab Emirates
| | - Mohammad Abu Haija
- Center
for Catalysis and Separations, Khalifa University
of Science and Technology, P.O. Box,
127788, Abu Dhabi 127788, United Arab Emirates
| | - Ramesh Rajendran
- Department
of Physics, Periyar University, Salem 636011, Tamil Nadu, India
| |
Collapse
|
14
|
Chen H, Bao E, Du X, Ren X, Liu X, Li Y, Xu C. Advanced hybrid supercapacitors assembled with high-performance porous MnCo2O4.5 nanosheets as battery-type cathode materials. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Kour S, Tanwar S, Kour P, Sharma A. Hierarchical Template-free Chestnut-like Manganese Cobaltite for High-Performance Symmetric and Asymmetric Supercapacitor. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|