1
|
Zhai W, Wang J, Liang R, Fan X, Tao X, He J, Jin Y, Zhang M, Song L. Facile and Rapid Synthesis of Ultra-Low-Loading Pt-Based Catalyst Boosting Electrocatalytic Hydrogen Production. Chempluschem 2025:e2500057. [PMID: 40152913 DOI: 10.1002/cplu.202500057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/23/2025] [Accepted: 03/26/2025] [Indexed: 03/29/2025]
Abstract
The development of a low-cost hydrogen evolution reaction (HER) catalyst is crucial for the implementation of hydrogen production via water electrolysis. Herein, a facile and rapid electrodeposition method to synthesize an ultra-low-loading platinum-based catalyst in a short time of 120 s without any other chemical additive is reported. A functionalized nitrogen-doped carbon nanotube (F-N-CNT) is utilized as a carbon support to controllably and effectively anchor the Pt species. With partially oxidized and unzipped, the surface of F-N-CNT is characterized with zig-zag graphene-like nanodomains, which provide enriched deposition sites for Pt species and act as a buffer preventing the agglomeration and overloading of the Pt. Due to rational design of the interfacial chemical environment, the optimized Pt/F-N-CNTs catalyst possesses an ultra-low loading of 1.37 wt% but delivers a prominent HER activity superior to commercial 20 wt% Pt/C. Therefore, this work provides a novel approach to preparing the Pt-based catalyst with outstanding activity and rational loading.
Collapse
Affiliation(s)
- Wenjie Zhai
- Jiangsu Innovation Platform of Lithium Composite-Materials for Battery R&D, Institute of Energy Supply Technology for High-end Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China
| | - Jiayi Wang
- Jiangsu Innovation Platform of Lithium Composite-Materials for Battery R&D, Institute of Energy Supply Technology for High-end Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China
| | - Ruili Liang
- Jiangsu Innovation Platform of Lithium Composite-Materials for Battery R&D, Institute of Energy Supply Technology for High-end Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China
| | - Xiaoli Fan
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Xuewei Tao
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| | - Jianping He
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China
| | - Yachao Jin
- Jiangsu Innovation Platform of Lithium Composite-Materials for Battery R&D, Institute of Energy Supply Technology for High-end Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China
| | - Mingdao Zhang
- Jiangsu Innovation Platform of Lithium Composite-Materials for Battery R&D, Institute of Energy Supply Technology for High-end Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China
| | - Li Song
- Jiangsu Innovation Platform of Lithium Composite-Materials for Battery R&D, Institute of Energy Supply Technology for High-end Equipment, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Nanjing, 210044, Jiangsu, China
| |
Collapse
|
2
|
Shaghaghi Z, Bikas R, Aligholivand M, Jafari S, Kinzhybalo V. Enhanced methanol electro-oxidation activity of CuO nanoparticles derived from the thermal decomposition of a Cu II salophen type coordination compound. Sci Rep 2025; 15:4394. [PMID: 39910159 PMCID: PMC11799195 DOI: 10.1038/s41598-025-86818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025] Open
Abstract
Electrocatalysts based on Cu compounds have been considered as a suitable alternative to platinum compounds due to their low cost, high abundance, excellent redox properties, and performing the methanol oxidation reaction (MOR) at low potentials. This article represents a study of CuO nanoparticles (NPs) prepared through a simple method of thermal decomposition of the CuL coordination compound (H2L = N,N'-bis(salicylidene)-4-chloro-1,2-diaminobenzene), C20H13ClCuN2O2, as a precursor by different electrochemical methods. A comparison of the MOR ability of precursor (CuL) and CuO NPs shows that both compounds are active, but CuO NPs present a peak current density of about 248 mA cm- 2 when screened for catalytic MOR in 1.0 M KOH with 0.5 M methanol, which is superior to the performance of CuL and some previously reported related catalysts based on CuO. The methanol oxidation peak at 0.69 V vs. Ag/AgCl is also more intense than CuL (0.77 V). The modified electrode with CuO NPs also shows lower onset potential, lower Tafel slope, higher electrochemically active surface area (ECSA) and better stability compared to the CuL electrode. These advantages can be assigned to the higher activity of catalytic sites and the lower charge transfer resistance of CuO due to its higher electrical conductivity than the CuL.
Collapse
Affiliation(s)
- Zohreh Shaghaghi
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Sceince, Azarbaijan Shahid Madani University, Tabriz, Iran, 5375171379.
| | - Rahman Bikas
- Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, 34148- 96818, Iran
| | - Mehri Aligholivand
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Sceince, Azarbaijan Shahid Madani University, Tabriz, Iran, 5375171379
| | - Sahar Jafari
- Coordination Chemistry Research Laboratory, Department of Chemistry, Faculty of Sceince, Azarbaijan Shahid Madani University, Tabriz, Iran, 5375171379
| | - Vasyl Kinzhybalo
- Institute of Low Temperature and Structure Research, Polish Academy of Science, Wroclaw, 50-422, Poland
| |
Collapse
|
3
|
Li J, Ma Y, Mu X, Wang X, Li Y, Ma H, Guo Z. Recent Advances and Perspectives on Coupled Water Electrolysis for Energy-Saving Hydrogen Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411964. [PMID: 39777433 PMCID: PMC11831450 DOI: 10.1002/advs.202411964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Indexed: 01/11/2025]
Abstract
Overall water splitting (OWS) to produce hydrogen has attracted large attention in recent years due to its ecological-friendliness and sustainability. However, the efficiency of OWS has been forced by the sluggish kinetics of the four-electron oxygen evolution reaction (OER). The replacement of OER by alternative electrooxidation of small molecules with more thermodynamically favorable potentials may fundamentally break the limitation and achieve hydrogen production with low energy consumption, which may also be accompanied by the production of more value-added chemicals than oxygen or by electrochemical degradation of pollutants. This review critically assesses the latest discoveries in the coupled electrooxidation of various small molecules with OWS, including alcohols, aldehydes, amides, urea, hydrazine, etc. Emphasis is placed on the corresponding electrocatalyst design and related reaction mechanisms (e.g., dual hydrogenation and N-N bond breaking of hydrazine and C═N bond regulation in urea splitting to inhibit hazardous NCO- and NO- productions, etc.), along with emerging alternative electrooxidation reactions (electrooxidation of tetrazoles, furazans, iodide, quinolines, ascorbic acid, sterol, trimethylamine, etc.). Some new decoupled electrolysis and self-powered systems are also discussed in detail. Finally, the potential challenges and prospects of coupled water electrolysis systems are highlighted to aid future research directions.
Collapse
Affiliation(s)
- Jiachen Li
- Department of ChemistryThe University of Hong KongHong Kong999077China
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Yuqiang Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
| | | | | | - Yang Li
- Shaanxi Key Laboratory of Degradable Biomedical MaterialsSchool of Chemical EngineeringNorthwest UniversityXi'an710069China
| | - Haixia Ma
- Xi'an Key Laboratory of Special Energy Materials, School of Chemical EngineeringNorthwest UniversityXi'an710069China
- Zhijian LaboratoryXi'an710025China
| | - Zhengxiao Guo
- Department of ChemistryThe University of Hong KongHong Kong999077China
| |
Collapse
|
4
|
Wang H, Gao C, Liu Z, Li B, Dok Kim Y, Feng J, Sun K, Peng Z. Pt-Ru atomic alloys confined in mesoporous carbon hollow spheres for accelerating methanol oxidation. J Colloid Interface Sci 2025; 678:1004-1011. [PMID: 39276509 DOI: 10.1016/j.jcis.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/31/2024] [Accepted: 09/01/2024] [Indexed: 09/17/2024]
Abstract
Active and durable electrocatalysts are essential for commercializing direct methanol fuel cells. However, Pt-based catalysts, extensively utilized in the methanol oxidation reaction (MOR), are suffered from resource scarcity and CO poisoning, which degrade MOR activity severely. Herein, Pt1Rux bimetallic catalysts were synthesized by confining Pt1Rux alloys within the shells of mesoporous carbon hollow spheres (MCHS) via a vacuum-assisted impregnation method (Pt1Rux@MCHS). The confinement effect induced by mesoporous carbon hollow spheres resulted in a robust structure of Pt1Ru3@MCHS with an ultrafine dispersion of alloy nanoparticles. The experimental and theoretical results confirmed that the boosting electrocatalytic activity and stability of the MOR over Pt1Ru3@MCHS were contributed to the regulated electronic structure as well as the superior CO tolerance of atomic Pt site caused by the electronic interaction between single Pt atoms and Ru nanoparticles. This strategy is versatile for the rational design of Pt-based bimetallic catalysts and has a positive impact on MOR performance.
Collapse
Affiliation(s)
- Haiyang Wang
- College of Chemistry, Henan Institute of Advance Technology, College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Caiyan Gao
- School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, PR China
| | - Zhongyi Liu
- College of Chemistry, Henan Institute of Advance Technology, College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Baojun Li
- College of Chemistry, Henan Institute of Advance Technology, College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China
| | - Young Dok Kim
- Department of Chemistry, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jie Feng
- College of Chemistry, Henan Institute of Advance Technology, College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Kaihang Sun
- College of Chemistry, Henan Institute of Advance Technology, College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Zhikun Peng
- College of Chemistry, Henan Institute of Advance Technology, College of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China; Yunnan Key Laboratory of Electromagnetic Materials and Devices, Yunnan University, Yunan 650000, PR China.
| |
Collapse
|
5
|
Yang P, Dong S, Shu Y, Wei X. Pt Nanoparticles on Multi-Walled Carbon Nanotubes with High CO Tolerance for Methanol Electrooxidation. Molecules 2024; 29:5015. [PMID: 39519656 PMCID: PMC11547461 DOI: 10.3390/molecules29215015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/08/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Anode catalysts are important for direct methanol fuel cells (DMFCs) of energy conversion. Herein, we report a novel strategy by ethylene glycol-based deep eutectic solvents (EG-DESs) for the fabrication of a multi-walled carbon nanotubes (MWCNTs)-supported Pt nanoparticles catalyst (referred to as Pt/CNTs-EG-DES). The Pt/CNTs-EG-DES catalyst provides an increased electrochemically active surface area (ECSA) and shows remarkably improved electrocatalytic performance towards methanol oxidation reaction compared to Pt/CNTs-W (fabricated in water) and commercial Pt/C catalysts. The improved performance is attributed to the generation of more Pt-O bonds which change the electronic states of the Pt atoms and the special node structure that obtains more active sites for a high CO resistance. This study suggests an effective synthesis strategy for Pt-based electrocatalysts with high performance for DMFC applications.
Collapse
Affiliation(s)
- Pingping Yang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China; (P.Y.); (S.D.)
| | - Shiming Dong
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China; (P.Y.); (S.D.)
| | - You Shu
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua 418000, China; (P.Y.); (S.D.)
| | | |
Collapse
|
6
|
Absalyamova M, Nurmyrza M, Nurlan N, Bae S, Lee W. The effect of carbonized zeolitic imidazolate framework-67 (ZIF-67) support on the reactivity and selectivity of bimetal-catalytic aqueous NO 3- reduction. CHEMOSPHERE 2024; 358:142161. [PMID: 38685335 DOI: 10.1016/j.chemosphere.2024.142161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
A metallic catalyst, Cobalt N-doped Carbon (Co@NC), was obtained from Zeolitic-Imidazolate Framework-67 (ZIF-67) for efficient aqueous nitrate (NO3-) removal. This advanced catalyst indicated remarkable efficiency by generating valuable ammonium (NH3/NH4+) via an environmentally friendly production technique during the nitrate treatment. Among various metals (Cu, Pt, Pd, Sn, Ru, and Ni), 3.6%Pt-Co@NC exhibited an exceptional nitrate removal, demonstrating a complete removal of 60 mg/L NO3--N (265 mg/L NO3-) in 30 min with the fastest removal kinetics (11.4 × 10-2 min-1) and 99.5% NH4+ selectivity. The synergistic effect of bimetallic Pt-Co@NC led to 100% aqueous NO3- removal, outperforming the reactivity by bare ZIF-67 (3.67%). The XPS analysis illustrated Co's promotor role for NO3- reduction to less oxidized nitrogen species and Pt's hydrogenation role for further reduction to NH4+. The durability test revealed a slight decrease in NO3- removal, which started from the third cycle (95%) and slowly proceeded to the sixth cycle (80.2%), while NH4+ selectivity exceeded 82% with no notable Co or Pt leaching throughout seven consecutive cycles. This research shed light on the significance of the impregnated Pt metal and Co exposed on the Co@NC surface for the catalytic nitrate treatment, leading to a sustainable approach for the effective removal of nitrate and economical NH4+ production.
Collapse
Affiliation(s)
- Miriam Absalyamova
- Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Meiirzhan Nurmyrza
- Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan; Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Nurbek Nurlan
- Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Sungjun Bae
- Civil and Environmental Engineering, College of Engineering, Konkuk University, Seoul, 05029, South Korea
| | - Woojin Lee
- Laboratory of Environmental Systems, National Laboratory Astana, Nazarbayev University, Astana, 010000, Kazakhstan; Civil and Environmental Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan.
| |
Collapse
|
7
|
Xie S, Liu F, Abdiryim T, Liu X, Jamal R, Song Y, Niyaz M, Liu Y, Zhang H, Tang X. PEDOT-embellished Ti 3C 2Tx nanosheet supported Pt-Pd bimetallic nanoparticles as efficient and stable methanol oxidation electrocatalysts. Dalton Trans 2023; 52:16345-16355. [PMID: 37856218 DOI: 10.1039/d3dt02269b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Exploiting high-efficiency and durable electrocatalysts toward the methanol oxidation reaction (MOR) is crucial for the advancement of direct methanol fuel cells (DMFCs). Herein, we demonstrate the loading of platinum-palladium bimetallic nanoparticles (Pt-Pd NPs) onto poly(3,4-ethylenedioxythiophene) (PEDOT)-embellished titanium carbide (Ti3C2Tx) nanosheets as the electrocatalyst (Ti3C2Tx/PEDOT/Pt-Pd) via a facile and rapid chemical reduction-assisted one-pot hydrothermal process. The structural and morphological analyses of Ti3C2Tx/PEDOT/Pt-Pd indicate that the three-dimensional (3D) hybrid structure formed between PEDOT and Ti3C2Tx provides a sizable active surface and more active sites, which enhances the homogeneous dispersion of the Pt-Pd NPs and facilitates mass transfer. The Schottky junctions formed between PEDOT and Pt-Pd NPs contribute to charge transfer. The electronic effects and synergistic interactions between the support and catalyst favor the electrocatalytic activity of the catalyst. The electrochemical test results reveal that the Ti3C2Tx/PEDOT/Pt-Pd catalyst has prominent electrocatalytic capability for the MOR. Compared with Ti3C2Tx/Pt-Pd and commercial Pt/C catalysts, the Ti3C2Tx/PEDOT/Pt-Pd catalyst has a larger electrochemical activity surface area (ECSA = 122 m2 g-1) and higher mass activity (MA = 1445.4 mA mg-1), as well as better CO tolerance and more reliable long-term durability (a peak current density retention of 71% after 5200 s).
Collapse
Affiliation(s)
- Shuyue Xie
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Yanyan Song
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Mariyam Niyaz
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Yajun Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Hujun Zhang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| | - Xinsheng Tang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, P.R. China.
| |
Collapse
|
8
|
Ipadeola AK, Abdelgawad A, Salah B, Abdullah AM, Eid K. Interfacial Engineering of Porous Pd/M (M = Au, Cu, Mn) Sponge-like Nanocrystals with a Clean Surface for Enhanced Alkaline Electrochemical Oxidation of Ethanol. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:13830-13840. [PMID: 37724885 DOI: 10.1021/acs.langmuir.3c01285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
The interfacial engineering of Pd-based alloys (i.e., PdM with distinct morphologies, compositions, and strain defects) is an efficient way for enhanced catalytic activity; however, it remains a grand challenge to fabricate such alloys in aqueous solutions without heating, organic solvents, and multiple reaction steps. Herein, we present a simple, aqueous-phase, one-step, and ultrafast approach for the interfacial engineering of surfactant-free porous PdM (M = Cu, Au, and Mn) nanocrystals with well-controlled spongy-like morphology and compositions. The electronic interaction in PdM nanocrystals and their effect on the alkaline electrochemical ethanol oxidation reaction (EOR) are investigated using XRD, XPS, and electrochemical tests. Notably, integrating M metals into Pd atoms results in upshifting the d-band center of Pd and subsequently modulating the EOR activity and stability substantially. The EOR mass activity (10.78 A/mgPd (6.93 A/mgPdCu)) of PdCu was 1.83, 3.09, 4.51, and 53.90 times higher than those of AuPd (5.90 A/mgPd (3.27 A/mgAuPd)), PdMn (3.48 A/mgPd (3.19 A/mgPdMn)), Pd (2.39 A/mgPd), and Pd/C (0.20 A/mgPd), respectively, besides substantial durability after 1000 cycles. This is due to the porous two-dimensional morphology, a low synergetic effect, higher interfacial interaction, and greater active surface area of PdCu, besides a high Cu content with more oxophilicity that facilitates activation/dissociation of H2O to generate -OH species needed for quick EOR electrocatalysis. The electrochemical impedance spectroscopy (EIS) reveals better electrolyte/electrode interfacial interaction and lower charge transfer resistance on PdCu. The EOR activity of PdCu porous sponge-like nanocrystals was superior to all previously reported Pd-based alloys for electrochemical EOR. This study indicates that binary Pd-based catalysts with less synergetic effect are preferred for boosting the EOR activity, which could help in manipulating the surface properties of Pd-based alloys to optimize EOR performance.
Collapse
Affiliation(s)
- Adewale K Ipadeola
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Ahmed Abdelgawad
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | - Belal Salah
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| | | | - Kamel Eid
- Gas Processing Center(GPC), College of Engineering, Qatar University, Doha 2713, Qatar
| |
Collapse
|
9
|
Li S, Wang H, Li Y, Yang H, Zhu X, Bu Q, Liu Q. Enhancement of photoelectrocatalytic performance of copper cobaltate nanoflowers modified with 5,10,15,20-tetrakis(4-carboxylphenyl)porphyrin for methanol oxidation under light. Dalton Trans 2023; 52:3016-3023. [PMID: 36779369 DOI: 10.1039/d2dt04098k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
With the continuously increasing global energy demand, there is an urgent requirement to find efficient methanol oxidation reaction (MOR) catalysts that can replace precious metals. In this work, we have elaborately integrated 5,10,15,20-tetrakis(4-carboxyphenyl) porphyrin (H2TCPP) with copper cobaltate (CuCo2O4), which possesses efficient separation of photogenerated charges and increased active sites. The mass activity of H2TCPP/CuCo2O4 (534.75 mA mg-1) toward MOR is higher than that of pure CuCo2O4 (291.75 mA mg-1) under light. In addition, H2TCPP/CuCo2O4 can catalyze the oxidation of other alcohols, such as ethanol, ethanediol, isopropanol, and glycerol. This study demonstrates that it is feasible to enhance the MOR activity by the modification of bimetallic transition metal oxides with porphyrins.
Collapse
Affiliation(s)
- Shu Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Haoran Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Yuanhao Li
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Hui Yang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Xixi Zhu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qijing Bu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Qingyun Liu
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
10
|
Bekmezci M, Gules GN, Bayat R, Sen F. Modification of multi-walled carbon nanotubes with platinum-osmium to develop stable catalysts for direct methanol fuel cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:1223-1229. [PMID: 36804657 DOI: 10.1039/d2ay02002e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the study, a new bimetallic catalyst was synthesized for methanol oxidation using multi-walled carbon nanotube (MWCNT)-supported platinum-osmium (PtOs) nanoparticles (PtOs@MWCNT NPs). The morphological structures of the prepared NPs were examined using different techniques, such as scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical characterization of the synthesized PtOs@MWCNT catalysts, such as chronoamperometry (CA), cyclic voltammetry (CV), scan rate (SR) analysis, cyclic catalytic test, and electrochemical surface area (ECSA) evaluation, were performed in an alkaline medium. From the results obtained, the size of the NPs was found to be 3.12 nm according to the Debye-Schrrer equation, and the MWCNTs were clearly observed by SEM imaging. After the characterization of the prepared nanomaterials, the PtOs@MWCNT catalysts were employed in the methanol oxidation reaction, and a high oxidation current value of 220.86 mA cm-2 was observed. Besides, according to the CA results, the catalyst exhibited high stability for 4000 s, and it was seen that Os metal improved the catalytic activity of the main catalyst. These results show that the PtOs@MWCNT catalyst is highly stable and reusable, and provides high electrocatalytic activity in the methanol oxidation reaction. Moreover, the obtained catalyst gave ideal results in terms of CO tolerance and activity. These data show that the obtained catalyst will provide significant improvement and superior efficiency in fuel-cell applications.
Collapse
Affiliation(s)
- Muhammed Bekmezci
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000 Kutahya, Turkey.
- Department of Materials Science & Engineering, Faculty of Engineering, University of Dumlupinar, Evliya Celebi Campus, 43000, Kutahya, Turkey
| | - Gamze Nur Gules
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000 Kutahya, Turkey.
- Department of Molecular Biology and Genetics, Faculty of Science, Mugla Sitki Kocman University, 48000 Mugla, Turkey
| | - Ramazan Bayat
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000 Kutahya, Turkey.
- Department of Materials Science & Engineering, Faculty of Engineering, University of Dumlupinar, Evliya Celebi Campus, 43000, Kutahya, Turkey
| | - Fatih Sen
- Sen Research Group, Department of Biochemistry, University of Dumlupinar, 43000 Kutahya, Turkey.
| |
Collapse
|
11
|
Pei HM, Liu X, Huang CM, Zhou J, Zou HH. Infrequent Cubane-Like Chromium Sulfide Cluster with σ-Donor Ligands with Efficient Electrocatalytic Property Toward Hydrogen Evolution Reaction. Inorg Chem 2023; 62:2951-2957. [PMID: 36719137 DOI: 10.1021/acs.inorgchem.2c04464] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The exploitation of efficient and economical electrocatalysts for hydrogen evolution reaction (HER) is of exceeding interest in renewable clean-energy technologies. Herein, the facile solvothermal reaction of S and chromic acetate in ethylenediamine (en) achieved a novel organic hybrid chromium sulfide [Cr4(μ3-S)4(en)4(SH)4]·0.25H2O (1), which offers a new type of antiferromagnetic cubane-like chromium sulfide cluster with σ-donor en ligands. 1 was utilized in combination with Ni nanoparticles and porous Ni foam (NF) to fabricate a Ni/1/NF electrode as an efficient cathodic catalyst, indicating excellent electrocatalytic property toward HER.
Collapse
Affiliation(s)
- Hong-Mei Pei
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Xing Liu
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Chun-Mei Huang
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Jian Zhou
- Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Hua-Hong Zou
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmacy, Guangxi Normal University, Guilin 541004, P. R. China
| |
Collapse
|
12
|
Han L, Li H, Yang L, Liu Y, Liu S. Rational Design of NiZn x@CuO Nanoarray Architectures for Electrocatalytic Oxidation of Methanol. ACS APPLIED MATERIALS & INTERFACES 2023; 15:9392-9400. [PMID: 36752630 DOI: 10.1021/acsami.2c21054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Methanol oxidation reaction (MOR) in anodes is one of the significant aspects of direct methanol fuel cells (DMFCs), which also plays a critical role in achieving a carbon-neutral economy. Designing and developing efficient, cost-effective, and durable non-Pt group metal-based methanol oxidation catalysts are highly desired, but a gap still remains. Herein, we report well-defined hierarchical NiZnx@CuO nanoarray architectures as active electrocatalysts for MOR, synthesized by combining thermal oxidation treatment and magnetron sputtering deposition through a brass mesh precursor. After systematically evaluating the electrocatalytic performance of NiZnx@CuO nanoarray catalysts with different preparation conditions, we found that the NiZn1000@CuO (thermally oxidized at 500 °C for 2 h, nominal thickness of the NiZn alloy film is 1000 nm) electrode delivers a high current density of 449.3 mA cm-2 at 0.8 V for MOR in alkaline media as well as excellent operation stability (92% retention after 12 h). These outstanding MOR performances can be attributed to the hierarchical well-defined structure that can not only render abundant active sites and a synergistic effect to enhance the electrocatalytic activity but also can effectively facilitate mass and electron transport. More importantly, we found that partial Zn atoms could leach from the NiZn alloy, resulting in rough surface nanorods, which would further increase the specific surface area. These results indicate that the NiZn1000@CuO nanoarray architecture could be a promising Pt group metal alternative as an efficient, cost-effective, and durable anode catalyst for DMFCs.
Collapse
Affiliation(s)
- Lingyi Han
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Hanyu Li
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Lan Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Yalan Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| | - Shantang Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430073, China
| |
Collapse
|
13
|
Kamyabi MA, Jadali S, Sharifi Khangheshlaghi L, Hashemi Heris MK. A high-performance Pt-based catalyst for the methanol oxidation reaction: effect of electrodeposition mode and cocatalyst on electrocatalytic activity. NEW J CHEM 2023. [DOI: 10.1039/d2nj05164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The influence of supporting material, cocatalyst, and electrodeposition mode on MOR activity.
Collapse
Affiliation(s)
- Mohammad Ali Kamyabi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| | - Salma Jadali
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| | - Leila Sharifi Khangheshlaghi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| | - Mir Karim Hashemi Heris
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| |
Collapse
|
14
|
Xu W, Wu K, Wu Y, Guo Q, Fan F, Li A, Yang L, Zheng F, Fan Y, Chen W. High-efficiency water splitting catalyzed by NiMoO4 nanorod arrays decorated with vacancy defect-rich NiTex and MoOy layers. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Kuchipudi A, Nagappan S, Karmakar A, Sreedhar G, Kundu S. Stabilization of Ru NPs over 3D LaCrO 3 Nanostructures for High-Performance HER Catalysts in Acidic Media. Inorg Chem 2022; 61:19407-19416. [DOI: 10.1021/acs.inorgchem.2c03209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Anup Kuchipudi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Electroplating and Metal Finishing (EMF) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Sreenivasan Nagappan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu630003, India
| | - Arun Karmakar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu630003, India
| | - Gosipathala Sreedhar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Electroplating and Metal Finishing (EMF) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu, 630003, India
| | - Subrata Kundu
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
- Electrochemical Process Engineering (EPE) Division, CSIR-Central Electrochemical Research Institute (CECRI), Karaikudi, Tamil Nadu630003, India
| |
Collapse
|
16
|
Liu J, Zhang J, Xu M, Tian C, Dong Y, Wang CA. Pt 3Co/Co Composite Catalysts on Porous N-Doped Carbon Support Derived from ZIF-67 with Enhanced HER and ORR Activities. Inorg Chem 2022; 61:19309-19318. [DOI: 10.1021/acs.inorgchem.2c03114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Jiewen Liu
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen333001, PR China
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, PR China
| | - Jian Zhang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, PR China
| | - Mingjie Xu
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, PR China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Chuanjin Tian
- School of Materials Science and Engineering, Jingdezhen Ceramic University, Jingdezhen333001, PR China
| | - Yanhao Dong
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, PR China
| | - Chang-An Wang
- State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing100084, PR China
| |
Collapse
|