1
|
Liu Y, Liu M, Li X, Wen L, Chen X, Huang Z, Ding D, Yang S, Chen Y, Chen R. Electrical activation of periodate by nano-zero-valent cobalt/nitrogen-doped carbon for sulfisoxazole degradation: Insights into rapid electron transfer mechanisms. J Colloid Interface Sci 2025; 685:854-865. [PMID: 39870003 DOI: 10.1016/j.jcis.2025.01.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/07/2025] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
Periodate (PI) activation via three-dimensional electrochemical (E) is a promising approach for degrading sulfisoxazole (SIZ), while the scarcity of active sites significantly limits the efficient electron-transfer rate. Herein, we synthesized multiple strongly active zero-valent cobalt (Co0) nanoparticles encapsulated in nitrogen-doped carbon (NC) shells through Co-potassium chloride (KCl) doping pyrolysis of Zeolitic Imidazolate Framework-8 (ZIF-8) to induce the rapid electron transfer pathways (ETP). Specifically, molten KCl doping provides confined structures for Co0 with a diameter of 12.57 nm embedded in the NC shell, thereby expanding the active space of Co0/NC. The generated Co0/NC exhibited an enormous electrochemically active surface area (ECSA, 736.92 cm2/mg), low charge transfer resistance (Rct, 38.50 Ω), and strong adsorption energy (-6.003 eV), which together promote robust electron transfer kinetics. Capitalizing on these properties, the E-Co0/NC-PI system achieved 100% SIZ removal at a degradation rate of 1.587 min-1 under near-neutral (pH 5.00-9.00) conditions, with ultra-low energy consumption (0.011 kWh m-3, $0.125/L). This study highlights a Co0/NC-induced rapid ETP for SIZ removal, offering insights into enhanced electrical activation of PI for wastewater treatment.
Collapse
Affiliation(s)
- Yu Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Liu
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoping Li
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lanxuan Wen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaobao Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zonghan Huang
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dahu Ding
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shengjiong Yang
- Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, No.13, Yanta Road, Xi'an, Shanxi 710055, China
| | - Yang Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Rongzhi Chen
- Yanshan Earth Critical Zone and Surface Fluxes Research Station, College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Yi Y, Hu S, Ma Y, Tang T, Liu C, Yan Y, Lei L, Hou Y. The structure impact of lignin in pulping material on the energy storage performance of black liquor derived carbon cathodes for zinc ion hybrid capacitors. J Colloid Interface Sci 2025; 683:55-67. [PMID: 39671900 DOI: 10.1016/j.jcis.2024.12.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/28/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Cooking black liquors generated during the pulping process have been recognized as promising electrode materials which can be directly applied as carbon sources. This paper investigates the relationship between the microstructure of lignin and the electrochemical properties of carbon derived from black liquor obtained from various plants, including softwood, hardwood, and grass. It was found that eucalyptus black liquor, abundant in methoxy groups, has a notable impact on the performance of carbon materials compared to black liquor derived from Pinus sylvestris and bamboo. The abundant methoxy groups contribute to micropore formation and facilitate the incorporation of oxygen atoms from the lignin side chains into the carbon matrix. This process results in a porous carbon structure with a substantial specific surface area (1599 m2/g) and an oxygen content of 5.4 %, which facilitate charge transfer and reduce the adsorption energy barrier (from -0.17 eV to -0.36 eV). The specific capacitance of the prepared single electrode reaches 271 F g-1. Additionally, a zinc ion hybrid capacitor utilizing a carbon cathode produced from eucalyptus black liquor achieves a maximum energy density of 71.8 Wh kg-1 and a power density of 1.11 kW kg-1. This work offers recommendations for selecting raw materials to optimize the industrial production of electrode materials for high energy storage devices.
Collapse
Affiliation(s)
- Yanjie Yi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Songqing Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yuyang Ma
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Tao Tang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Yan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Technical Center, Henan Cigarette Industry Tobacco Sheet Co., Ltd., Xuchang, Henan Province 461100 China
| | - Lirong Lei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
3
|
Gao Y, Jia S, Ma X, Cao Y, Huang Q, Zhang Q, Wang Y, Song M, Wang Z, Hu H, Chen J, Mu Y. Hybrid Particle Size Template Method for Controllable Synthesis of Nitrogen-Doped Multilevel Porous Carbon as High-Rate Zn-Ion Hybrid Supercapacitor Cathode Materials. Chemistry 2025; 31:e202403632. [PMID: 39499205 DOI: 10.1002/chem.202403632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 11/07/2024]
Abstract
Achieving high rate performance without compromising energy density has always been a critical objective for zinc-ion hybrid supercapacitors (ZHSCs). The pore structure and surface properties of carbon cathode materials play a crucial role. We propose utilizing a hybrid particle size (20 and 40 nm) magnesium oxide templates to regulate the pore structure of nitrogen-doped porous carbon derived from the soybean isolate. The multilevel pore structure enhanced ion transport efficiency while also improving the utilization of micropores. Nitrogen doping and oxygen-containing functional groups enhanced the wettability of carbon materials with aqueous electrolytes and facilitated the chemisorption of Zn2+ on the carbon material surface. The nitrogen-doped multilevel porous carbon material (HT-NMPC-1/1) prepared with a 1 : 1 mass ratio of the two templates exhibited a specific capacity of 146.65 mAh g-1 at 0.2 A g-1. Moreover, the Swagelok cells assembled with HT-NMPC-1/1 and Zn foil achieved a high energy density of 121.5 W h kg-1, high power output of 166 W kg-1, and 93.09 % capacity retention after 8000 cycles at 2 A g-1. Therefore, HT-NMPC-1/1 is a highly promising candidate for ZHSCs cathode materials. Furthermore, the novel pore regulation strategy and straightforward preparation method offer valuable reference points for other porous carbon-based functional materials.
Collapse
Affiliation(s)
- Yanfeng Gao
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Henan, 451191, P. R. China
| | - Shaopei Jia
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Henan, 451191, P. R. China
| | - Xiaofei Ma
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Henan, 451191, P. R. China
| | - Yunfei Cao
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Henan, 451191, P. R. China
| | - Quan Huang
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Henan, 451191, P. R. China
| | - Qian Zhang
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Henan, 451191, P. R. China
| | - Yanjie Wang
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Henan, 451191, P. R. China
| | - Meng Song
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Henan, 451191, P. R. China
| | - Zhixin Wang
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Henan, 451191, P. R. China
| | - Haijiao Hu
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Henan, 451191, P. R. China
| | - Jingxuan Chen
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Henan, 451191, P. R. China
| | - Yunchao Mu
- School of Materials Electronics and Energy Storage, Zhongyuan University of Technology, Henan, 451191, P. R. China
- School of Materials Science and Engineering, Henan University of Science and Technology, Henan, 471023, P. R. China
| |
Collapse
|
4
|
Gupta H, R Nair M, Kumar M, Awasthi K, Goel S, Roy T, Sarkar D. Insights of Zinc Ion Storage in Chilli-Stem Derived Porous Carbon Enabling Ultrastability and High Energy Density of Zinc-Ion Hybrid Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:1221-1233. [PMID: 39689144 DOI: 10.1021/acsami.4c17525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Aqueous zinc ion hybrid supercapacitors (ZIHSCs) are promising as low-cost and safe energy storage devices for next-generation applications. Still, their energy-power performance and durability are far from satisfactory. Here, we present an energy-dense, and ultrastable ZIHSC realized using activated porous carbons derived from chilli-stems. KOH activation resulted in a high specific surface area of 1710 m2/g, abundant mesoporous structure, and oxygen functionalities, which helped the KOH-activated carbon (CSK) to yield an impressive specific capacity and energy density of 192 mA h/g and 172 W h/kg, respectively, and makes it the top-performing ZIHSC in recent times. ZIHSC's cycling performance is exceptional, retaining over 90% capacity even after 50,000 charge-discharge cycles. Molecular dynamics simulations reveal easy Zn ion diffusion through interconnected channels and subsequent pore fillings within the carbon electrodes, rendering impressive performance. Simulations further reveal important atomic interactions, demonstrating that higher currents drawn from the device cause partial filling of pores and blockages in the channels and result in a decrease in the device's specific capacity. Benefitted by CSK's impressive performance, the aqueous Zn@pCu//CSK full-cell device has demonstrated good energy-power densities (57.7 W h/kg and 4.5 k W/kg) and durability over tens of thousands of cycles, further substantiating ZIHSCs' application prospects in real life.
Collapse
Affiliation(s)
- Himanshu Gupta
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan 302017, India
| | - Manikantan R Nair
- Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
| | - Manoj Kumar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan 302017, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan 302017, India
| | - Saurav Goel
- School of Engineering, London South Bank University, London SE1 0 AA, U.K
- Department of Mechanical Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Tribeni Roy
- Department of Mechanical Engineering, Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
- School of Interdisciplinary Research and Entrepreneurship (SIRE), Birla Institute of Technology and Science Pilani, Pilani, Rajasthan 333031, India
- School of Engineering, London South Bank University, London SE1 0 AA, U.K
| | - Debasish Sarkar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Rajasthan 302017, India
| |
Collapse
|
5
|
Yi Y, Hu S, Liu C, Yan Y, Lei L, Hou Y. Self-templating synthesis strategy of oxygen-doped carbon from unique wasted pulping liquid directly as a cathode material for high-performance zinc ion hybrid capacitors. J Colloid Interface Sci 2024; 675:569-579. [PMID: 38986330 DOI: 10.1016/j.jcis.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
Affinity and storage capacity for zinc ions of the electrode materials are crucial factors on the properties of zinc ion hybrid capacitors (ZHICs). Wasted pulping liquor with abundant carbohydrates, lignin and inorganic matter served as a unique precursor to produce embedded oxygen-doped hierarchical porous carbon directly through a one-step carbonization process in this investigation. In carbonization process, lignin can serve effectively as the carbon framework, carbohydrates not only act as sacrificial templates but also offer a plentiful oxygen source which can increase the affinity for Zn2+, and sodium-containing inorganic substances plays a role as hard templates to optimize the pore structure. The resulting porous carbon under carbonization temperature of 800 °C shows a high specifical area of 2186 m2g-1 with oxygen content of 4.8 %, which can reduce the adsorption energy of Zn2+ from -0.16 eV to -0.32 eV through electrochemical techniques and density functional theory (DFT) calculations, the incorporation of oxygen was demonstrated to enhance the adsorption and desorption kinetics of Zn2+, suggesting a bright future for application in the domain of energy storage. The resulting ZIHC assembly showcases a notable energy density of 84.6 Wh kg-1 at a power density of 359 W kg-1. Remarkably, even after 10,000 charge and discharge cycles, it exhibits exceptional cycle stability with retaining 86.56 % of its capacity. Consequently, this approach provides fresh insights for exploring the facile and commercial fabrication of biomass-derived cathodes for ZIHCs, thereby propelling the progress of eco-friendly energy storage devices.
Collapse
Affiliation(s)
- Yanjie Yi
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Songqing Hu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chao Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; International Innovation Center for Forest Chemicals and Materials and Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Ying Yan
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Technical Center, Henan Cigarette Industry Tobacco Sheet Co., Ltd., Xuchang, Henan Province 461100, China
| | - Lirong Lei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
6
|
Chen G, Yang G, He C, Lan T, He S, Yang H, Liu L, Yang W, Jian S, Zhang Q. High Capacitive Performance of N,O-Codoped Carbon Aerogels Synthesized via a One-Step Chemical Blowing and In Situ Activation Process. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 39255345 DOI: 10.1021/acs.langmuir.4c02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Biomass and its derivatives, with their renewable characteristics, cost-effectiveness, and controllable structural and compositional properties, are promising precursors for carbon materials. Herein, N,O-codoped carbon aerogels were synthesized by carbonization and zinc nitrate activation of histidine. The specific surface area (SSA) was markedly increased with the addition of zinc nitrate, and the maximum value achieved 853 m2 g-1 for ZHC-11 obtained with the molar ratio of 1:1 between histidine and zinc nitrate. The D/G-band intensity ratio increased from 1.55 for the histidine-derived control sample HC to 1.65 for ZHC-11, indicating the enhancement of amorphous feature. The nitrogen content increased from 6.5% for HC to 1.60 for ZHC-11. The optimized microstructure and enriched heteroatom doping are beneficial to the capacitance performance. The optimum electrode exhibited 234.1 F g-1 at 0.1 A g-1 and maintained 116.5 F g-1 at 60 A g-1 in a three-electrode system. In particular, the symmetric supercapacitor showed 121.9 F g-1 and 19.5 Wh kg-1 at 0.2 A g-1. This research offers guidance on the cost-effective synthesis of carbon materials for supercapacitors, while also providing novel insights to realize the complete utilization of biomass derivatives.
Collapse
Affiliation(s)
- Guoqing Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guangjie Yang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenweijia He
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tiancheng Lan
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Shuijian He
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Haoqi Yang
- College of Electrical, Energy and Power Engineering, Institute of Technology for Carbon Neutralization, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Li Liu
- Shanghai Frontiers Science Center of Advanced Textiles, College of Textiles, Donghua University, Shanghai 201620, China
| | - Weisen Yang
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Shaoju Jian
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| | - Qian Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Science, Nanjing Forestry University, Nanjing 210037, China
- Fujian Key Laboratory of Eco-Industrial Green Technology, College of Ecology and Resources Engineering, Wuyi University, Wuyishan 354300, China
| |
Collapse
|
7
|
Kang F, Li Y, Zheng Z, Peng X, Rong J, Dong L. Sub-nanopores enabling optimized ion storage performance of carbon cathodes for Zn-ion hybrid supercapacitors. J Colloid Interface Sci 2024; 669:766-774. [PMID: 38744154 DOI: 10.1016/j.jcis.2024.05.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/07/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024]
Abstract
Aqueous Zn-ion hybrid supercapacitors (ZHSs) are attracting significant attention as a promising electrochemical energy storage system. However, carbon cathodes of ZHSs exhibit unsatisfactory ion storage performance due to the large size of hydrated Zn-ions (e.g., [Zn(H2O)6]2+), which encumbers compact ion arrangement and rapid ion transport at the carbon-electrolyte interfaces. Herein, a porous carbon material (HMFC) with abundant sub-nanopores is synthesized to optimize the ion storage performance of the carbon cathode in ZHSs, in which the sub-nanopores effectively promote the dehydration of hydrated Zn-ions and thus optimize the ion storage performance of the carbon cathode in ZHSs. A novel strategy is proposed to study the dehydration behaviors of hydrated Zn-ions in carbon cathodes, including quantitatively determining the desolvation activation energy of hydrated Zn-ions and in-situ monitoring active water content at the carbon-electrolyte interface. The sub-nanopores-induced desolvation effect is verified, and its coupling with large specific surface area and hierarchically porous structure endows the HMFC cathode with improved electrochemical performance, including a 53 % capacity increase compared to the carbon cathode counterpart without sub-nanopores, fast charge/discharge ability that can output 46.0 Wh/kg energy within only 4.4 s, and 98.2 % capacity retention over 20,000 charge/discharge cycles. This work provides new insights into the rational design of porous carbon cathode materials toward high-performance ZHSs.
Collapse
Affiliation(s)
- Fulian Kang
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Yang Li
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Zhiyuan Zheng
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Xinya Peng
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Jianhua Rong
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China
| | - Liubing Dong
- College of Chemistry and Materials Science, Jinan University, Guangzhou 511443, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| |
Collapse
|
8
|
Liu J, Ding Y, Wang F, Ran J, Zhang H, Xie H, Pi Y, Ma L. Enhancing the supercapacitive performance of a carbon-based electrode through a balanced strategy for porous structure, graphitization degree and N,B co-doping. J Colloid Interface Sci 2024; 668:213-222. [PMID: 38677210 DOI: 10.1016/j.jcis.2024.04.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Regarding carbon-based electrodes, simultaneously establishing a well-defined meso-porous architecture, introducing abundant hetero-atoms and improving the graphitization degree can effectively enhance their capacitive performance. However, it remains a significant challenge to achieve a good balance between defects and graphitization degree. In this study, the porous structure and composition of carbon materials are co-optimised through a 'dual-function' strategy. Briefly, K3Fe(C2O4)3 and H3BO3 were hybridised with a gelatin aqueous solution to form a homogeneous composite hydrogel, followed by lyophilisation and carbonisation. Owing to the dual functionality of raw materials, the graphitization, activation and hetero-atom doping processes can occur simultaneously during a one-step high-temperature treatment. The resultant carbon material exhibits a high graphitization degree (ID/IG = 0.9 ± 0.1), high hetero-atom content (N: 9.0 ± 0.3 at.%, B: 6.9 ± 0.5 at.%) and a large specific area (1754 ± 58 m2/g). The as-prepared electrode demonstrates a superior capacitance of 383 ± 1F g-1 at 1 A/g. Interestingly, the cyclic voltammetry (CV) curves exhibit a distinctive pair of broad redox peaks, which is uncommon in KOH electrolyte. Experiment data and density functional theory (DFT) simulation verify that N-5, B co-doping enhances the activity of the faradic reaction of carbon electrodes in KOH electrolyte. Furthermore, the fabricated Zn-ion hybrid supercapacitor (ZHSC) based on this carbon electrode delivers a high-energy density of 140.7 W h kg-1 at a power density of 840 W kg-1.
Collapse
Affiliation(s)
- Jin Liu
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Yu Ding
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Feng Wang
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Jiabing Ran
- College of Biological & Pharmaceutical Sciences, China Three Gorges University, Yichang 443002, China.
| | - Haining Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou 310003, China
| | - Yuqiang Pi
- Hubei Engineering & Technology Research Center for Functional Materials from Biomass, School of Chemistry and Material Science, Hubei Engineering University, Xiaogan, Hubei 432000, China
| | - Liya Ma
- Core Facility of Wuhan University, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
9
|
Fan Y, Fu F, Yang D, Liu W, Qiu X. Thiocyanogen-modulated N, S Co-doped lignin hierarchical porous carbons for high-performance aqueous supercapacitors. J Colloid Interface Sci 2024; 667:147-156. [PMID: 38636216 DOI: 10.1016/j.jcis.2024.04.099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Constructing heteroatom-doped porous carbons with distinct charge storage properties is significant for high-energy-density supercapacitors, yet it remains a formidable challenge. Herein, we employed a thiocyanogen-modulated alkali activation strategy to synthesize N and S co-doped lignin hierarchical porous carbon (NSLHPC). In this process, thiocyanogen serves as a surface modulation mediator to substitute oxygen with nitrogen and sulfur species, while the combination of KOH activation and MgO template generates numerous nanopores within the carbon structure. The three-dimensional interconnected nanosheet architecture facilitates rapid ion transfer and enhances accessibility to active sites. Density functional theory (DFT) calculations demonstrate that introducing N and S heteroatoms through oxygen substitution reduces the adsorption energy barrier of Zn2+. Consequently, the optimized NSLHPC exhibits a remarkable specific capacitance of 438F/g at 0.5 A/g in 6 M KOH, delivering an energy density of 10.4 Wh/kg in the symmetric supercapacitor and an impressive energy density of 104.9 Wh/kg in the zinc-ion hybrid capacitor. The NSLHPC cathode also shows an excellent lifespan with capacitance retention of 99.0 % and Columbic efficiency of 100 % over 10,000 cycles. This study presents innovative strategies for engineering high-performance porous carbon electrode materials by emphasizing pore structure modulation and N, S co-doping as crucial approaches.
Collapse
Affiliation(s)
- Yukang Fan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou, 510641, China
| | - Fangbao Fu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dongjie Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou, 510641, China.
| | - Weifeng Liu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Laboratory of Green Chemical Product Technology, Guangdong Provincial Key Laboratory of Fuel Cell Technology, South China University of Technology, Guangzhou, 510641, China
| | - Xueqing Qiu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
10
|
Aggarwal R, Gupta H, Awasthi K, Kumar M, Sarkar D, Sonkar SK. Heteroatom Doping in Pollutant Diesel Soot-Derived Nanocarbon for Enhanced Zn-Ion Storage Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:9481-9489. [PMID: 38650463 DOI: 10.1021/acs.langmuir.4c00009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Herein, we have isolated onion-like nanocarbon (ONC) from the exhaust soot of diesel engines and further doped it with nitrogen (N) and sulfur (S) to fabricate N,S-co-doped ONC (N-S-ONC). To explore its application feasibility, we have assembled an aqueous Zn-ion hybrid supercapacitor (ZIHSC) with a N-S-ONC cathode, which attains high specific capacitance with good rate capability. In-depth analyses suggest that the mechanism of charge storage in the ONC is governed by both capacitive-controlled and diffusion-controlled processes, with the capacitive processes leading at all sweep rates. The ZIHSC demonstrated a good energy density of 50 Wh/kg, a maximum power density of 3.6 kW/kg, and an impressive cycle life with 73% capacitance retention after 50,000 charge-discharge cycles. The study suggests the potential possibly for the long-term application of BC derived nanocarbon in electrochemical energy storage systems (EESSs).
Collapse
Affiliation(s)
- Ruchi Aggarwal
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Himanshu Gupta
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Manoj Kumar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Debasish Sarkar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| | - Sumit Kumar Sonkar
- Department of Chemistry, Malaviya National Institute of Technology Jaipur, Jaipur 302017, India
| |
Collapse
|
11
|
Zhang G, Zhang Y, Wang J, Yu J, Wang K, Li G, Guan T. Nitrogen-functionalization of carbon materials for supercapacitor: Combining with nanostructure directly is superior to doping amorphous element. J Colloid Interface Sci 2024; 660:478-489. [PMID: 38246051 DOI: 10.1016/j.jcis.2024.01.112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Just how heteroatomic functionalization enhances electrochemical capacity of carbon materials is a recent and widely studied field in scientific research. However, there is no consensus on whether combining with heteroatom-bearing nanostructures directly or doping amorphous elements is more advantageous. Herein, two kinds of porous carbon nanosheets were prepared from coal tar pitch through anchoring graphitic carbon nitride (PCNs/GCNs-5) or doping amorphous nitrogen element (PCNs/N). The structural characteristics and electrochemical properties of the two PCNs were revealed and compared carefully. It can be found that the amorphous nitrogen of PCNs/N will have a grievous impact on its carbon skeleton network, resulting in reduced stability in charge and discharge process, while the structural collapse of carbon network could be avoided in PCNs/GCNs-5 by the heteroatoms in the form of nanostructure. Particularly, PCNs/GCNs-5 exhibits extremely high specific capacity of 388 F g-1 at 1 A g-1, and splendid the capacitance retention rate of 98% after 10,000 cycles of charge and discharge, which are overmatch than the amorphous nitrogen doped carbon materials reported recently and PCNs/N. The combining strategy with nanostructure will inspire the design of carbon materials towards high-performance supercapacitor.
Collapse
Affiliation(s)
- Guoli Zhang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway.
| | - Yi Zhang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway
| | - Jianlong Wang
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Jiangyong Yu
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China
| | - Kaiying Wang
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway
| | - Gang Li
- Institute Energy Innovation, College of Materials Science and Engineering, Taiyuan University of Technology, 79 West Yingze Street, Taiyuan 030024, PR China; Department of Microsystems, University of South-Eastern Norway, Horten 3184, Norway.
| | - Taotao Guan
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China; CAS Key Laboratory of Carbon Materials, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030001, PR China.
| |
Collapse
|
12
|
Yang Z, Chang X, Mi H, Wang Z, Gao J, Xiao X, Guo F, Ji C, Qiu J. Oxygen-enriched pitch-derived hierarchically porous carbon toward boosted zinc-ion storage performance. J Colloid Interface Sci 2024; 658:506-517. [PMID: 38128194 DOI: 10.1016/j.jcis.2023.12.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/08/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
The lack of cathode materials with satisfactory Zn2+ storage capability substantially hinders the realization of high-performance aqueous zinc-ion hybrid capacitors (ZHCs). Herein, we propose a facile KMnO4 template-assisted KOH activation strategy to prepare a novel oxygen-enriched hierarchically porous carbon (HPC-1-4). This strategy efficiently converts coal tar pitch (CTP) into a well-tuned carbon material with a large specific surface area of 3019 m2 g-1 and a high oxygen content of 9.20 at%, which is conducive to providing rich active sites, rapid charge transport, and appreciable pseudocapacitance for Zn-ion storage. Thus, the as-fabricated HPC-1-4-based aqueous ZHC exhibits prominent performance, including a high gravimetric capacity (206.7 mAh g-1 at 0.25 A g-1), a remarkable energy density (153.4 Wh kg-1 at 184.2 W kg-1), and an impressive power output (15240 W kg-1 at 63.5 Wh kg-1). In-depth ex-situ characterizations indicate that the excellent electrochemical properties of ZHCs are due to the synergistic effect of the Zn2+ adsorption mechanism and reversible chemisorption. In addition, the assembled quasi-solid-state device demonstrates excellent electrochemical stability of up to 100% capacity retention over 50000 cycles, accompanied with a desirable energy density of 115.6 Wh kg-1. The facile preparation method of converting CTP into carbonaceous functional materials has advanced the development of efficient and eco-friendly energy storage technologies.
Collapse
Affiliation(s)
- Zhoujing Yang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Xiaqing Chang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Hongyu Mi
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China.
| | - Zhiyu Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Juntao Gao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Xiaoqiang Xiao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Fengjiao Guo
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China; State Key Laboratory of Fine Chemicals, Liaoning Key Lab for Energy Materials and Chemical Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| | - Chenchen Ji
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Jieshan Qiu
- State Key Laboratory of Chemical Resource Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
13
|
Li S, Chen W, Huang X, Ding L, Ren Y, Xu M, Zhu J, Miao Z, Liu H. Enabling Wasted A4 Papers as a Promising Carbon Source to Construct Partially Graphitic Hierarchical Porous Carbon for High-Performance Aqueous Zn-Ion Storage. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10126-10137. [PMID: 38349949 DOI: 10.1021/acsami.3c17969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Considering the superiorities of abundance, easy collection, low cost, and nearly constant composition, the wasted A4 papers are deemed as a recyclable and scalable carbon source to fabricate functional carbon materials for Zn-ion hybrid supercapacitors (ZIHSCs), which integrate the supercapacitors' high-power output and batteries' high energy density. Herein, the wasted A4 papers are efficiently converted into an advanced carbon material owning a hierarchical porous structure with a high surface area and interconnected multiscale channels, a graphitic structure, and a good level of N/O codoping. By taking advantage of these features, an express electron/ion transfer pathway, a large accessible surface interface, and a robust architecture are achieved for swift kinetics, numerous active sites, and excellent steadiness to afford a charming Zn2+ storage capability for the aqueous coin-type ZIHSC device (a high capacity of 244 mAh g-1 at 0.1 A g-1 with a capacity conservation of 116.4 mAh g-1 even amplifying the current density by 200 times, a supreme energy density of 190.4 Wh kg-1, a supreme power output of 18 kW kg-1, and an eminent durability of 93.8% over 10,000 cycles at 10 A g-1). Excitingly, the quasi-solid ZIHSC device also bespeaks an enjoyable capacity of 211.7 mAh g-1, a high energy density of 159.3 Wh kg-1, good mechanical flexibility, and a low self-discharge rate. This work puts forward a simple and scalable strategy to enable the wasted A4 paper as a competitive carbon source to construct advanced cathode material for Zn2+ storage.
Collapse
Affiliation(s)
- Shi Li
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Key Laboratory of Production and Conversion of Green Hydrogen, Anhui Polytechnic University, Wuhu 241000, China
| | - Wei Chen
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Xiuli Huang
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Key Laboratory of Production and Conversion of Green Hydrogen, Anhui Polytechnic University, Wuhu 241000, China
| | - Lei Ding
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Key Laboratory of Production and Conversion of Green Hydrogen, Anhui Polytechnic University, Wuhu 241000, China
| | - Yiming Ren
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Key Laboratory of Production and Conversion of Green Hydrogen, Anhui Polytechnic University, Wuhu 241000, China
| | - Maodong Xu
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Key Laboratory of Production and Conversion of Green Hydrogen, Anhui Polytechnic University, Wuhu 241000, China
| | - Jiang Zhu
- Department of Ultrasound, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
- Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Zongcheng Miao
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Key Laboratory of Production and Conversion of Green Hydrogen, Anhui Polytechnic University, Wuhu 241000, China
| | - Huan Liu
- School of Chemical and Environmental Engineering, Anhui Laboratory of Clean Catalytic Engineering, Key Laboratory of Production and Conversion of Green Hydrogen, Anhui Polytechnic University, Wuhu 241000, China
| |
Collapse
|
14
|
Song P, Li C, Yao X, Zhang D, Zhao N, Zhang Y, Xu K, Chen X, Liu Q. Regenerated silk protein based hybrid film electrode with large area specific capacitance, high flexibility and light weight towards high-performance wearable energy storage. J Colloid Interface Sci 2023; 652:1793-1802. [PMID: 37683407 DOI: 10.1016/j.jcis.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/27/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
Planar wearable supercapacitors (PWSCs) have sparked intense interest owing to their hopeful application in smart electronics. However, current PWSCs suffered from poor electrochemical property, weak flexibility and/or large weight. To relieve these defects, in this study, we fabricated a high-performance PWSC using silk protein derived film electrodes (PPy/RSF/MWCNTs-2; RSF, PPy and MWCNTs represent regenerated silk film, polypyrrole and multi-walled carbon nanotubes, respectively, while 2 is the mass ratio of silk to MWCNTs), which were developed by 'dissolving-mixing-evaporating' and in situ polymerization. In three-electrode, PPy/RSF/MWCNTs-2 showed a superb area specific capacitance of 8704.7 mF cm-2 at 5 mA cm-2, which surpassed numerous reported PWSC electrodes, and had a decent durability with a capacitance retention of 90.7 % after 5000 cycles. The PPy/RSF/MWCNTs-2 derived PWSC showed a largest energy density of 281.3 μWh cm-2 at 1660.1 μW cm-2, and a power density as high as 13636.4 μW cm-2 at 125.6 μWh cm-2. Furthermore, impressive capacitive-mechanical stability with a capacitance retention of 92 % under bending angles from 0 to 150 was depicted. Thanks to the rational and affordable preparation, our study for the first time prepared RSF electrode that had great capacitive property, high mechanical flexibility and light weight, simultaneously. The encouraging results can not only open up a new path to manufacture high-performance flexible electrodes, but may also help to realize the high-value-added utilization of silk.
Collapse
Affiliation(s)
- Peng Song
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China.
| | - Congcong Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Xiaohui Yao
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Dongyang Zhang
- College of Biotechnology and Sericultural Research Institute, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Ningmiao Zhao
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Yue Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Keqiang Xu
- Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaojuan Chen
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China
| | - Qi Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, PR China.
| |
Collapse
|
15
|
Zhu C, Long R, Zhu L, Zou W, Zhang Y, Gao Z, Shi J, Tian W, Wu J, Wang H. Sulfate template induced S/O doped carbon nanosheets enabling rich physi/chemi-sorption sites for high-performance zinc ion hybrid capacitors. J Colloid Interface Sci 2023; 652:590-598. [PMID: 37611468 DOI: 10.1016/j.jcis.2023.08.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Zinc ion hybrid capacitors (ZIHCs) are encouraging energy storage devices for large-scale applications. Nevertheless, the electrochemical performance of ZIHCs is often limited by the cathode materials which show low energy density and rate capability practically. One of the efficient strategies to overcome these challenges is the development of advanced carbon cathode materials with abundant physi/chemisorption sites. Herein, we develop a sulfate template strategy to prepare sulfur and oxygen doped carbon nanosheets (SOCNs) as a potential cathode active material for ZIHCs. The as-prepared SOCNs exhibit porous architectures with a large surface area of 1877 m2 g-1, substantial structural defects, and high heteroatom-doped contents (O: 7.9 at%, S: 0.7 at%). These exceptional features are vital to enhancing Zn ion storage. Consequently, the SOCN cathode shows a high capacity of 151 mAh g-1 at 0.1 A g-1, high cycle stability with 83% capacity retention at 5 A g-1 after 4000 cycles, and a superior energy density of 103.1 Wh kg-1. We also investigate the dynamic adsorption/desorption behaviors of Zn ions and anions of the ZIHCs carbon electrodes during the process of charge and discharge by ex-situ experiments. This work highlights the significance of the integration with a large specific surface area and bountiful heteroatoms in carbon electrodes for achieving high-performance ZIHCs.
Collapse
Affiliation(s)
- Chunliu Zhu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Rui Long
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liyang Zhu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Wenyu Zou
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yafei Zhang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zongying Gao
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jing Shi
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Weiqian Tian
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Jingyi Wu
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huanlei Wang
- School of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
16
|
Gupta H, Dahiya Y, Rathore HK, Awasthi K, Kumar M, Sarkar D. Energy-Dense Zinc Ion Hybrid Supercapacitors with S, N Dual-Doped Porous Carbon Nanocube Based Cathodes. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42685-42696. [PMID: 37653567 DOI: 10.1021/acsami.3c09202] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Zinc ion hybrid supercapacitors (ZIHSCs) are truly promising as next-generation high-performance energy storage systems because they could offer high energy density like batteries while exhibiting high power output and long cycle life traits of supercapacitors. The key point of constructing a high-performance ZIHSC is to couple the Zn anode with an appropriate cathode material, which has high theoretical capacity, cost-effectiveness, and intrinsic safety features. In this work, we have demonstrated the potentiality of S, N co-doped porous carbon nanocubes (S, N-CNCs) as a cathode material for devising a ZIHSC with excellent energy density and cycle life. The S, N-CNCs are prepared from a zeolitic imidazolate framework (ZIF)-8 precursor via a simultaneous pyrolyzing-doping strategy in an inert atmosphere. Resultant CNCs are monodisperse with an average size of around 65 nm and porous in nature, with uniform N and S doping throughout the structure. Benefitted from such hierarchical porous architecture and the presence of abundant heteroatoms, the assembled ZIHSC with S, N-CNC as the cathode and Zn-foil as the anode in a ZnSO4 aqueous electrolyte could reach a specific capacity as high as 165.5 mA h g-1 (331 F g-1) at 1 A g-1, which corresponds to a satisfactory energy density of 148.9 W h kg-1 at the power density of 900 W kg-1. The ZIHSC has displayed a good cycle stability with more than 70% capacity retention after 10,000 charge-discharge cycles. Furthermore, to verify the practical feasibility of such a cathode material, an aqueous 3D Zn@Cu//S, N-CNC full-cell device is fabricated, which has demonstrated a satisfactory specific capacity (49.6 mAh g-1 at 0.25 A g-1) and an impressive energy density (42.2 Wh kg-1 with 212.2 W kg-1). Full ZIHSC devices are also found to be efficient in powering light-emitting diodes, further substantiating their feasibility in next-generation energy storage applications.
Collapse
Affiliation(s)
- Himanshu Gupta
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Yogita Dahiya
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Hem Kanwar Rathore
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Kamlendra Awasthi
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Manoj Kumar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| | - Debasish Sarkar
- Department of Physics, Malaviya National Institute of Technology Jaipur, Jaipur, Rajasthan 302017, India
| |
Collapse
|