1
|
Wang FY, Zhang HX, Ma SH, Kong DM, Hao PP, Zhu LN. Quercetin sensitized covalent organic framework for boosting photocatalytic H 2O 2 production and antibacterial. J Colloid Interface Sci 2025; 693:137593. [PMID: 40252580 DOI: 10.1016/j.jcis.2025.137593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 03/31/2025] [Accepted: 04/11/2025] [Indexed: 04/21/2025]
Abstract
In order to overcome the problems of narrow absorption spectrum, easy recombination of photogenerated carriers, and low solar energy utilization of single semiconductor photocatalysts, sensitization systems have been developed to further improve the efficiency of photocatalytic performance. However, the current sensitizers are mainly focused on relatively single dye molecules, which are easily decomposed during the photoreaction process. Therefore, the development of a novel sensitization system with high activity and stability is imminent. In this work, the natural compound Quercetin was used as a sensitizer to sensitized TAPPy-Da-COF. The Quercetin/TAPPy-Da-COF composites promoted rapid separation of photogenerated electron pairs and exhibited a broad visible-light response, which effectively improved the photocatalytic efficiency. The H2O2 yield of Quercetin/TAPPy-Da-COF in pure water is 289.84 μmol·h-1·g-1, which is 1.3 times higher than that of TAPPy-Da-COF. In addition, the reactive oxygen species (ROS) produced by photocatalysis under visible light had obvious antibacterial effects against Escherichia coli (E.coil) and Staphylococcus aureus (S.aureus). Meanwhile, At the same time, Quercetin/TAPPy-Da-COF/polyvinyl alcohol (PVA) aerogel was prepared by cross-linking method combined with freeze-drying method. It not only efficiently produced H2O2 and in-situ antimicrobial, but also realized rapid reuse of the catalyst. This work demonstrates that the natural compound Quercetin can be used as a sensitizer to sensitize semiconductor materials and promote the improvement of photocatalytic performance. This not only provides a new perspective for the subsequent development of green, efficient, and low-cost photosensitizers, but also offers a promising pathway for the synthesis of high-performance photocatalytic composites.
Collapse
Affiliation(s)
- Feng-Ying Wang
- College of Chemistry and Materials Science, Qinghai Minzu University, Xining 810007, China
| | - Hong-Xia Zhang
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China; Tianjin Tianbao Xiang Technology Co., Ltd, Tianjin 300350, China
| | - Sheng-Hua Ma
- College of Chemistry and Materials Science, Qinghai Minzu University, Xining 810007, China; Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China
| | - De-Ming Kong
- College of Chemistry and Materials Science, Qinghai Minzu University, Xining 810007, China.
| | | | - Li-Na Zhu
- Department of Chemistry, School of Science, Tianjin University, Tianjin 300354, China.
| |
Collapse
|
2
|
Khan S, Qaiser MA, Qureshi WA, Xu Y, Li J, Li H, Sun L, Haider SNUZ, Zhu B, Wang L, Wang W, Liu Q. Constructing Interfacial B-P Bonding Bridge to Promote S-Scheme Charge Migration within Heteroatom-Doped Carbon Nitride Homojunction for Efficient H 2O 2 Photosynthesis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6249-6259. [PMID: 39818719 DOI: 10.1021/acsami.4c17246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The emerging step (S)-scheme heterojunction systems became a powerful strategy in promoting photogenerated charge separation while maintaining their high redox potentials. However, the weak interfacial interaction limits the charge migration rate in S-scheme heterojunctions. Herein, we construct a unique S-scheme carbon nitride (CN) homojunction with boron (B)-doped CN and phosphorus (P)-doped CN (B-CN/P-CN) for hydrogen peroxide (H2O2) photosynthesis. The B-CN/P-CN nanosheet composites revealed extensively tight interfacial contact, improved visible-light harvesting, and reduced carrier lifetime. The structural investigation results also indicate that the interfacial chemical B-P bonding is formed between B-CN and P-CN nanosheets, inducing an accelerated interfacial S-scheme charge migration. Density functional theory calculations further clarify the S-scheme charge transfer mechanism. Consequently, the 2e- oxygen reduction reaction was the predominant pathway of H2O2 production, facilitated by the B-CN/P-CN homojunction. The optimal H2O2 yield rate reached 2199.5 μmol L-1 h-1 over the B-CN/P-CN homojunction (S3) photocatalyst under monochromatic LED irradiation, increasing 2-8 times as against most of the C3N4 photocatalysts. This study highlights the crucial role of interfacial charge transfer between heterojunction/homojunction materials, accompanied by an unveiling reaction mechanism for solar-energy conversions.
Collapse
Affiliation(s)
- Shahid Khan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Muhammad Adnan Qaiser
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Waqar Ahmad Qureshi
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Ying Xu
- College of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jinhe Li
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Han Li
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, Hubei 442020, P. R. China
| | - Lijuan Sun
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | | | - Bicheng Zhu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Lele Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Weikang Wang
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| | - Qinqin Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, P. R. China
| |
Collapse
|
3
|
Sun X, Yang J, Zeng X, Guo L, Bie C, Wang Z, Sun K, Sahu AK, Tebyetekerwa M, Rufford TE, Zhang X. Pairing Oxygen Reduction and Water Oxidation for Dual-Pathway H 2O 2 Production. Angew Chem Int Ed Engl 2024; 63:e202414417. [PMID: 39308269 DOI: 10.1002/anie.202414417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Indexed: 11/07/2024]
Abstract
Hydrogen peroxide (H2O2) is a crucial chemical applied in various industry sectors. However, the current industrial anthraquinone process for H2O2 synthesis is carbon-intensive. With sunlight and renewable electricity as energy inputs, photocatalysis and electrocatalysis have great potential for green H2O2 production from oxygen (O2) and water (H2O). Herein, we review the advances in pairing two-electron O2 reduction and two-electron H2O oxidation reactions for dual-pathway H2O2 synthesis. The basic principles, paired redox reactions, and catalytic device configurations are introduced initially. Aligning with the energy input, the latest photocatalysts, electrocatalysts, and photo-electrocatalysts for dual-pathway H2O2 production are discussed afterward. Finally, we outlook the research opportunities in the future. This minireview aims to provide insights and guidelines for the broad community who are interested in catalyst design and innovative technology for on-site H2O2 synthesis.
Collapse
Affiliation(s)
- Xin Sun
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia E-mail: s
| | - Jindi Yang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia E-mail: s
| | - Xiangkang Zeng
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia E-mail: s
| | - Lijun Guo
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia E-mail: s
- National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu, 610065, PR China
| | - Chuanbiao Bie
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan, 430078, P. R. China
| | - Zhuyuan Wang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia E-mail: s
| | - Kaige Sun
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia E-mail: s
| | - Aloka Kumar Sahu
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia E-mail: s
| | - Mike Tebyetekerwa
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia E-mail: s
| | - Thomas E Rufford
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia E-mail: s
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia E-mail: s
- ARC Centre of Excellence for Green Electrochemical Transformation of Carbon Dioxide, The University of Queensland, St. Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
4
|
Liu P, Liang T, Li Y, Zhang Z, Li Z, Bian J, Jing L. Photocatalytic H 2O 2 production over boron-doped g-C 3N 4 containing coordinatively unsaturated FeOOH sites and CoO x clusters. Nat Commun 2024; 15:9224. [PMID: 39455557 PMCID: PMC11511943 DOI: 10.1038/s41467-024-53482-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Graphitic carbon nitride (g-C3N4) has gained increasing attention in artificial photosynthesis of H2O2, yet its performance is hindered by sluggish oxygen reduction reaction (ORR) kinetics and short excited-state electron lifetimes. Here we show a B-doped g-C3N4 (BCN) tailored with coordinatively unsaturated FeOOH and CoOx clusters for H2O2 photosynthesis from water and oxygen without sacrificial agents. The optimal material delivers a 30-fold activity enhancement compared with g-C3N4 under visible light, with a solar-to-chemical conversion efficiency of 0.75%, ranking among the forefront of reported g-C3N4-based photocatalysts. Additionally, an electron transfer efficiency reaches 34.1% for the oxygen reduction reaction as revealed by in situ microsecond transient absorption spectroscopy. Experimental and theoretical results reveal that CoOx initiates hole-water oxidation and prolongs the electron lifetime, whereas FeOOH accepts electrons and promotes oxygen activation. Intriguingly, the key to the direct one-step two-electron reaction pathway for H2O2 production lies in coordinatively unsaturated FeOOH to adjust the Pauling-type adsorption configuration of O2 to stabilize peroxide species and restrain the formation of superoxide radicals.
Collapse
Affiliation(s)
- Ping Liu
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Teng Liang
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yutong Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ziqing Zhang
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Zhuo Li
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China
| | - Ji Bian
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China.
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Materials Chemistry (Ministry of Education), School of Chemistry and Materials Science, International Joint Research Center and Lab for Catalytic Technology, Heilongjiang University, Harbin, 150080, P. R. China.
| |
Collapse
|
5
|
Tai Y, Yang B, Li J, Meng L, Xing P, Wang S. Design and Preparation of Heterostructured Cu 2O/TiO 2 Materials for Photocatalytic Applications. Molecules 2024; 29:5028. [PMID: 39519669 PMCID: PMC11547863 DOI: 10.3390/molecules29215028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
The extensive use of fossil fuels has sped up the global development of the world economy and is accompanied by significant problems, such as energy shortages and environmental pollution. Solar energy, an inexhaustible and clean energy resource, has emerged as a promising sustainable alternative. Light irradiation can be transformed into electrical/chemical energy, which can be used to remove pollutants or transform contaminants into high-value-added chemicals through photocatalytic reactions. Therefore, photocatalysis is a promising strategy to overcome the increasing energy and environmental problems. As is well-known, photocatalysts are key components of photocatalytic systems. Among the widely investigated photocatalysts, titanium dioxide (TiO2) has attracted great attention owing to its excellent light-driven redox capability and photochemical stability. However, its poor solar light response and rapid recombination of electron-hole pairs limit its photocatalytic applications. Therefore, strategies to enhance the photocatalytic activity of TiO2 by narrowing its bandgap and inhibiting the recombination of charges have been widely accepted. Constructing heterojunctions with other components, including cuprous oxide (Cu2O), has especially narrowed the bandgap, providing a promising means of solving the present challenges. This paper reviews the advances in research on heterostructured Cu2O/TiO2 photocatalysts, such as their synthesis methods, mechanisms for the enhancement of photocatalytic performance, and their applications in hydrogen production, CO2 reduction, selective synthesis, and the degradation of pollutants. The mechanism of charge separation and transfer through the Cu2O/TiO2 heterojunctions and the inherent factors that lead to the enhancement of photocatalytic performance are extensively discussed. Additionally, the current challenges in and future perspectives on the use of heterostructured Cu2O/TiO2 photocatalysts are also highlighted.
Collapse
Affiliation(s)
| | | | | | | | | | - Shengjie Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China; (Y.T.); (B.Y.); (J.L.); (L.M.); (P.X.)
| |
Collapse
|
6
|
Xu Y, Hou W, Huang K, Guo H, Wang Z, Lian C, Zhang J, Wu D, Lei Z, Liu Z, Wang L. Engineering Built-In Electric Field Microenvironment of CQDs/g-C 3N 4 Heterojunction for Efficient Photocatalytic CO 2 Reduction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403607. [PMID: 38728594 PMCID: PMC11267297 DOI: 10.1002/advs.202403607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Indexed: 05/12/2024]
Abstract
Graphitic carbon nitride (CN), as a nonmetallic photocatalyst, has gained considerable attention for its cost-effectiveness and environmentally friendly nature in catalyzing solar-driven CO2 conversion into valuable products. However, the photocatalytic efficiency of CO2 reduction with CN remains low, accompanied by challenges in achieving desirable product selectivity. To address these limitations, a two-step hydrothermal-calcination tandem synthesis strategy is presented, introducing carbon quantum dots (CQDs) into CN and forming ultra-thin CQD/CN nanosheets. The integration of CQDs induces a distinct work function with CN, creating a robust interface electric field after the combination. This electric field facilitates the accumulation of photoelectrons in the CQDs region, providing an abundant source of reduced electrons for the photocatalytic process. Remarkably, the CQD/CN nanosheets exhibit an average CO yield of 120 µmol g-1, showcasing an outstanding CO selectivity of 92.8%. The discovery in the work not only presents an innovative pathway for the development of high-performance photocatalysts grounded in non-metallic CN materials employing CQDs but also opens new avenues for versatile application prospects in environmental protection and sustainable cleaning energy.
Collapse
Affiliation(s)
- Yun Xu
- Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Weidong Hou
- Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Kai Huang
- State Key Laboratory of Chemical EngineeringShanghai Engineering Research Center of Hierarchical Nanomaterialsand School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Zeming Wang
- Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| | - Cheng Lian
- State Key Laboratory of Chemical EngineeringShanghai Engineering Research Center of Hierarchical Nanomaterialsand School of Chemistry and Molecular EngineeringEast China University of Science and TechnologyShanghai200237P. R. China
| | - Jiye Zhang
- School of Materials Science and EngineeringShanghai University99 Shangda RoadShanghai200444P. R. China
| | - Deli Wu
- College of Environmental & EngineeringTongji UniversityShanghai200092P. R. China
| | - Zhendong Lei
- College of Environmental & EngineeringTongji UniversityShanghai200092P. R. China
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Zheng Liu
- School of Materials Science and EngineeringNanyang Technological University50 Nanyang AvenueSingapore639798Singapore
| | - Liang Wang
- Institute of Nanochemistry and NanobiologySchool of Environmental and Chemical EngineeringShanghai UniversityShanghai200444P. R. China
| |
Collapse
|
7
|
Qi Y, Zhou G, Wu Y, Wang H, Yan Z, Wu Y. In-situ construction of In 2O 3/In 2S 3-CdIn 2S 4 Z-scheme heterojunction nanotubes for enhanced photocatalytic hydrogen production. J Colloid Interface Sci 2024; 664:107-116. [PMID: 38460376 DOI: 10.1016/j.jcis.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Semiconductor photocatalysis was considered as an ideal solution to energy shortages. Herein, a novel ternary In2O3/In2S3-CdIn2S4 (IOSC) nanotube (NTs) photocatalyst was successfully constructed via in situ growth of In2S3 and CdIn2S4 nanosheets onto In2O3 skeleton. It was used for the efficient and stable photo-production of hydrogen from water splitting. The rationally designed IOSC NTs displayed significantly enhanced photocatalytic H2 production under visible light irradiation (≥420 nm), with the highest H2 yield determined to be 2892 μmol·g-1, which is much higher than that of pristine In2S3 and In2O3/In2S3 (IOS) NTs. Cyclic testing has shown that the IOSC2 product remains stable after four cycles of repeated use. The enhanced photocatalytic activity was contributed by its tightly bound tube-nanosheets heterogeneous structure and superior light absorption. Photoelectrons transfer in IOSC2 follows a Z-scheme mechanism, which greatly facilitates its utilization of photogenerated electrons and prevents CdIn2S4 from undergoing photo-corrosion affecting material stability. This work demonstrates the key role of in situ growth in the interface design of ternary heterostructures.
Collapse
Affiliation(s)
- Yige Qi
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Guoxi Zhou
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yunchao Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Hou Wang
- Key Laboratory of Environment Biology and Pollution Control, College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
| | - Zhiyong Yan
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China
| | - Yan Wu
- College of Environment and Ecology, Hunan Agricultural University, Changsha 410128, PR China.
| |
Collapse
|
8
|
Hou W, Guo H, Wu M, Wang L. Amide Covalent Bonding Engineering in Heterojunction for Efficient Solar-Driven CO 2 Reduction. ACS NANO 2023; 17:20560-20569. [PMID: 37791704 DOI: 10.1021/acsnano.3c07411] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Inefficient charge separation and slow interfacial reaction dynamics significantly hamper the efficiency of photocatalytic CO2 reduction. Herein, a facile EDC/NHS-assisted linking strategy was developed to enhance charge separation in heterojunction photocatalysts. Using this approach, we successfully synthesized amide-bonded carbon quantum dot-g-C3N4 (CQD-CN) heterojunction photocatalysts. The formation of amide covalent bonds between CN and CQDs in the CN-CQD facilitates efficient carrier migration, CO2 adsorption, and activation. Exploiting these advantages, the CN-CQD photocatalysts exhibit high selectivity with CO and CH4 evolution rates of 79.2 and 2.7 μmol g-1 h-1, respectively. These rates are about 1.7 and 3.6 times higher than those of CN@CQD and bulk CN, respectively. Importantly, the CN-CQD photocatalysts demonstrate exceptional stability, even after 12 h of continuous testing. The presence of the COOH* signal is identified as a crucial intermediate species in the conversion of CO2 to CO. This study presents a covalent bonding engineering strategy for developing high-performance heterojunction photocatalysts for efficient solar-driven reduction of CO2.
Collapse
Affiliation(s)
- Weidong Hou
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Minghong Wu
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
9
|
Wang L, Sun J, Cheng B, He R, Yu J. S-Scheme Heterojunction Photocatalysts for H 2O 2 Production. J Phys Chem Lett 2023; 14:4803-4814. [PMID: 37191275 DOI: 10.1021/acs.jpclett.3c00811] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Photocatalysis opens a new door to H2O2 formation via a low-cost, clean, mild, and sustainable process, which holds great promise for the next generation of massive H2O2 production. However, fast photogenerated electron-hole recombination and slow reaction kinetics are the main obstacles for its practical application. An effective solution is to construct the step-scheme (S-scheme) heterojunction, which remarkably promotes carrier separation and boosts the redox power for efficient photocatalytic H2O2 production. Considering the superiority of S-scheme heterojunctions, this Perspective summarizes the recent advances of S-scheme photocatalysts for H2O2 production, including photocatalysts for building S-scheme heterojunctions, H2O2-production performance, and S-scheme photocatalytic mechanisms. Lastly, some prospects are given to motivate future research in this promising field, other promising strategies are provided to further improve H2O2 yields, and future research directions are suggested.
Collapse
Affiliation(s)
- Linxi Wang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China
| | - Jian Sun
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China
| | - Bei Cheng
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
| | - Rongan He
- Hunan Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 68 Jincheng Street, Wuhan 430078, P. R. China
| |
Collapse
|
10
|
Pan Y, Huang Z, Zheng D, Yang C. Interface engineering of sandwich SiO@α-FeO@COF core-shell S-scheme heterojunctions for efficient photocatalytic oxidation of gas-phase HS. J Colloid Interface Sci 2023; 644:19-28. [PMID: 37088014 DOI: 10.1016/j.jcis.2023.03.195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/21/2023] [Accepted: 03/29/2023] [Indexed: 04/04/2023]
Abstract
Hydrogen sulfide (H2S) is considered to be a broad-spectrum toxicant, and it is crucial to address this problem due to its serious health and climate change impacts. Photocatalysis can be effectively applied for the reduction of H2S molecules to S and other products. We synthesized sandwich-structured composite materials with internally immobilized SiO2 nanospheres and externally wrapped COF layers co-modified with iron oxide nanoparticles. Furthermore, originally looked at the efficiency of photocatalysis in reducing hydrogen sulfide to sulfur. In this paper, a sandwich structure of core-shell composite photocatalysts based on SiO2 was prepared by a multi-step method including Stöber and double ligand-regulated solvent heat, and these sandwich core-shell structures exhibited high hydrogen sulfide reduction and stability in applications. In addition, characterization, degradation studies, active substance trapping studies, and energy band structure analysis showed that S-type heterojunctions could effectively increase photo-generated carrier separation. This research advanced knowledge of photocatalytic hydrogen sulfide reduction and offered a novel approach for catalysts in COF sandwich core-shell structures.
Collapse
|