1
|
Tao J, Wang Y, Zhai W, Wang M. A core-shell AuNRs@BUT-16 nanocomposite for enhancement SERS detection and efficient removal of deoxynivalenol. J Adv Res 2025; 67:15-23. [PMID: 38237769 PMCID: PMC11725096 DOI: 10.1016/j.jare.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/27/2024] Open
Abstract
INTRODUCTION Deoxynivalenol (DON) is widely found in grains and poses a serious threat to human health, so there is an urgent need to develop methods for its simultaneous removal and detection. The novel metal organic framework (MOF) material BUT-16 has a high adsorption capacity (79.8%) for DON. Meanwhile, surface-enhanced Raman spectroscopy (SERS) has been widely used for rapid detection of analytes. OBJECTIVES The aim of this work is to prepare a material that can be used for enhancement SERS detection and efficient removal of DON. METHODS AuNRs@BUT-16 was prepared by in-situ solvothermal method and characterized using a series of characterization tools. AuNRs@BUT-16 was used as an adsorbent and SERS substrate for the removal and detection of DON, and some factors affecting the adsorption and SERS detection were investigated. The adsorption mechanism between DON and AuNRs@BUT-16 was investigated using molecular docking. The proposed SERS method was used to detect DON contamination in real samples. RESULTS The prepared core-shell AuNRs@BUT-16 showed a synergistic effect in improving DON adsorption and SERS response. 97.6 % of DON was removed by AuNRs@BUT-16 in aqueous solution, and 70 % in 80 % methanol. The pre-enrichment effect of BUT-16 could trap more DON molecules in the "hot spots" of AuNRs, thus the proposed SERS sensor based on AuNRs@BUT-16 substrate displayed outstanding SERS response and the limit of detection of DON was 3.87 × 10-3 μg/mL. Molecular docking revealed that hydrogen bond and π-alkyl interaction were the main reasons for high affinity between BUT-16 and DON, and Au-O bonds facilitated the adsorption of DON on AuNRs. CONCLUSIONS AuNRs@BUT-16 with superior enrichment and SERS detection capabilities has been used for simultaneous removal and SERS detection of DON, and it also has great potential to realize sensitive and selective detection and removal of DON in multiple disciplines.
Collapse
Affiliation(s)
- Jing Tao
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yudan Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wenlei Zhai
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Meng Wang
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
2
|
Ma H, Hu L, Ding F, Liu J, Su J, Tu K, Peng J, Lan W, Pan L. Introducing high-performance star-shaped bimetallic nanotags into SERS aptasensor: An ultrasensitive and interference-free method for chlorpyrifos detection. Biosens Bioelectron 2024; 263:116577. [PMID: 39033656 DOI: 10.1016/j.bios.2024.116577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 07/02/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Implementation of cost-effective, reliable, and efficient technologies for the sensitive, rapid, and accurate detection of pesticide residues in agriproducts presents a promising solution to the escalating food safety concerns. Herein, a high-performance surface-enhanced Raman scattering (SERS) aptasensor based on nanotag (AuNS@4-MBN@Ag-aptamer) was introduced for ultrasensitive, reliable, and interference-free detection of chlorpyrifos (CPF). This aptasensor featured star-shaped bimetallic nanotag as the principal Raman signal enhancement material and 4-mercaptobenzonitrile (4-MBN) as "biological-silent"-window reporter (at 2228 cm-1). Moreover, cDNA-linked Fe3O4@AuNPs (FA-cDNA) served as magnetic substrates to simplify the separation process of FA-cDNA-combined nanotags. In the aptasensor, the formation of FA-cDNA-aptamer-AuNS@4-MBN@Ag hybrids was hindered by CPF, and its Raman intensity decreased with increasing CPF concentration. Under optimal SERS conditions, the aptasensor exhibited a broad linear detection range from 2.5 × 102 to 5.0 × 104 pg⋅mL-1, with an impressively low limit of detection of 220.35 pg⋅mL-1 (signal-to-noise ratio = 3). The selectivity and reproducibility assessments highlighted its exceptional sensitivity and interference-free capabilities. Furthermore, practical applications on wheat and apples demonstrated satisfactory spiked recovery rates, ranging from 89.61% to 107.33% (relative standard deviation ≤ 14.55%). Consequently, the high-performance "biological-silent"-window nanotag-based aptasensor is a promising tool for monitoring trace CPF in complex matrices.
Collapse
Affiliation(s)
- Hui Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lingmeng Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fangchen Ding
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Liu
- Chengdu Customs Technology Center, Chengdu, 610041, China
| | - Jing Su
- Huai'an Food and Drug Inspection Institute, Huai'an, 223003, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jing Peng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weijie Lan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China.
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, 572024, China.
| |
Collapse
|
3
|
Cardellini J, Dallari C, De Santis I, Riccio L, Ceni C, Morrone A, Calamai M, Pavone FS, Credi C, Montis C, Berti D. Hybrid lipid-AuNP clusters as highly efficient SERS substrates for biomedical applications. Nat Commun 2024; 15:7975. [PMID: 39266504 PMCID: PMC11392932 DOI: 10.1038/s41467-024-52205-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/29/2024] [Indexed: 09/14/2024] Open
Abstract
Although Surface Enhanced Raman Scattering (SERS) is widely applied for ultrasensitive diagnostics and imaging, its potential is largely limited by the difficult preparation of SERS tags, typically metallic nanoparticles (NPs) functionalized with Raman-active molecules (RRs), whose production often involves complex synthetic approaches, low colloidal stability and poor reproducibility. Here, we introduce LipoGold Tags, a simple platform where gold NPs (AuNPs) clusters form via self-assembly on lipid vesicle. RRs embedded in the lipid bilayer experience enhanced electromagnetic field, significantly increasing their Raman signals. We modulate RRs and lipid vesicle concentrations to achieve optimal SERS enhancement and we provide robust structural characterization. We further demonstrate the versatility of LipoGold Tags by functionalizing them with biomolecular probes, including antibodies. As proof of concept, we successfully detect intracellular GM1 alterations, distinguishing healthy donors from patients with infantile GM1 gangliosidosis, showcasing LipoGold Tags as advancement in SERS probes production.
Collapse
Affiliation(s)
- Jacopo Cardellini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
- Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland
| | - Caterina Dallari
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Sesto Fiorentino, Italy
| | - Ilaria De Santis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
| | - Lorenzo Riccio
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
- Institute of Organic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Costanza Ceni
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
| | - Amelia Morrone
- Laboratory of Molecular Biology of Neurometabolic Diseases, Neuroscience Department, Meyer Children's Hospital IRCCS, Florence, Italy
- Department of Neurosciences, Psychology, Drug Research and Child Health (NEUROFARBA), University of Florence, Florence, Italy
| | - Martino Calamai
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Sesto Fiorentino, Italy
| | - Francesco Saverio Pavone
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- Department of Physics, University of Florence, Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Sesto Fiorentino, Italy
| | - Caterina Credi
- European Laboratory for Non-Linear Spectroscopy (LENS), Sesto Fiorentino, Italy
- National Institute of Optics-National Research Council, Sesto Fiorentino, Italy
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy.
| |
Collapse
|
4
|
You L, Zhong B, Huang C, Li J, Zheng Z, Wang Y. Magnetic polyphosphazene@Au particles as substrates for multiple-detection of immunoproteins by surface-enhanced Raman spectroscopy. J Colloid Interface Sci 2023; 648:1006-1014. [PMID: 37336092 DOI: 10.1016/j.jcis.2023.06.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023]
Abstract
Au coated magnetic polyphosphazene (MPCTP) composite particles (MPCTP@Au) were fabricated with sensitive SERS activity. The MPCTP particles were generated by coating polyphosphazene on Fe3O4 nanoparticles through precipitation polycondensation of hexachlorocyclotriphosphazene and phloroglucinol. MPCTP@Au composite particles were obtained by deposition of Au nanoparticles on MPCTP by the reduction of HAuCl4. The size and the thickness of the Au shell can be controlled by varying the amount of HAuCl4. The magnetic core endowed the composite particles with good magnetic responsiveness, which allowed the analyte to be enriched and separated from the complex matrix, and significantly simplifying the sample pretreatment procedure. The SERS activity of MPCTP@Au composite particles were evaluated by DTNB as model Raman reporter, and the limits of detection (LOD) of DTNB was 10-8 mol/L. A high efficient SERS immunoassay system based on the MPCTP@Au substrates for the detection of immunoproteins was developed. Human IgG and rabbit IgG were quantitatively determinated simultaneously by this immunoassay system. The quantitative determination of the immunoglobulin G (IgG) was achieved and the LOD of human IgG, rabbit IgG and the mixture of human IgG and rabbit IgG were as low as 10 fg/mL, 100 pg/mL and 1 ng/mL, respectively. The results showed that the MPCTP@Au composite particles have broad application prospects as high performance SERS active substrates for immunoprotein analysis.
Collapse
Affiliation(s)
- Lijun You
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China.
| | - Baohua Zhong
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Ci Huang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Jumei Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Zhijuan Zheng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yang Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|