1
|
Bhosale M, Morankar PJ, Amate RU, Jeon CW. Rational Designing of NiO Nanoparticles Anchored with PEG-WO 3 for Enhanced Water Oxidation Performance. Polymers (Basel) 2025; 17:1281. [PMID: 40363064 PMCID: PMC12074263 DOI: 10.3390/polym17091281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/19/2025] [Accepted: 04/26/2025] [Indexed: 05/15/2025] Open
Abstract
The electrochemical water splitting method is widely regarded as an efficient and sustainable approach for producing high-purity hydrogen in an environmentally friendly manner. Cost-effective and efficient electrocatalysts are essential for augmenting the electrocatalytic water oxidation reaction. Herein, the PEG-WO3-NiO electrocatalyst is acknowledged for attaining efficient oxygen evolution reaction (OER) performances in alkaline conditions. The NiO nanoparticles anchored themselves to the PEG-WO3's surface and produced an effective interfacial contact between the electrocatalyst materials. Among various compositions, the optimized ratio of the PEG-WO3-NiO electrocatalyst exhibits a low overpotential of 349.7 mV at a current density of 10 mA cm-2 and a Tafel slope of 71.22 mV dec-1 for the OER in 1 M KOH. Additionally, the electrocatalyst demonstrates excellent stability, maintaining its performance even after 5000 cyclic voltammetry (CV) cycles and chronopotentiometry analysis. Given its durability and high electrochemically active surface area, the PEG-WO3-NiO electrocatalyst contributes to the advancement of cost-effective and scalable solutions for water oxidation applications.
Collapse
Affiliation(s)
| | | | | | - Chan-Wook Jeon
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 712-749, Republic of Korea; (M.B.); (P.J.M.); (R.U.A.)
| |
Collapse
|
2
|
Chen J, Yang X, Li W, Lin Y, Lin R, Cai X, Yan B, Xie B, Li J. Potential molecular and cellular mechanisms of the effects of cuproptosis-related genes in the cardiomyocytes of patients with diabetic heart failure: a bioinformatics analysis. Front Endocrinol (Lausanne) 2024; 15:1370387. [PMID: 38883603 PMCID: PMC11176466 DOI: 10.3389/fendo.2024.1370387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/18/2024] Open
Abstract
Background Diabetes mellitus is an independent risk factor for heart failure, and diabetes-induced heart failure severely affects patients' health and quality of life. Cuproptosis is a newly defined type of programmed cell death that is thought to be involved in the pathogenesis and progression of cardiovascular disease, but the molecular mechanisms involved are not well understood. Therefore, we aimed to identify biomarkers associated with cuproptosis in diabetes mellitus-associated heart failure and the potential pathological mechanisms in cardiomyocytes. Materials Cuproptosis-associated genes were identified from the previous publication. The GSE26887 dataset was downloaded from the GEO database. Methods The consistency clustering was performed according to the cuproptosis gene expression. Differentially expressed genes were identified using the limma package, key genes were identified using the weighted gene co-expression network analysis(WGCNA) method, and these were subjected to immune infiltration analysis, enrichment analysis, and prediction of the key associated transcription factors. Consistency clustering identified three cuproptosis clusters. The differentially expressed genes for each were identified using limma and the most critical MEantiquewhite4 module was obtained using WGCNA. We then evaluated the intersection of the MEantiquewhite4 output with the three clusters, and obtained the key genes. Results There were four key genes: HSDL2, BCO2, CORIN, and SNORA80E. HSDL2, BCO2, and CORIN were negatively associated with multiple immune factors, while SNORA80E was positively associated, and T-cells accounted for a major proportion of this relationship with the immune system. Four enriched pathways were found to be associated: arachidonic acid metabolism, peroxisomes, fatty acid metabolism, and dorsoventral axis formation, which may be regulated by the transcription factor MECOM, through a change in protein structure. Conclusion HSDL2, BCO2, CORIN, and SNORA80E may regulate cardiomyocyte cuproptosis in patients with diabetes mellitus-associated heart failure through effects on the immune system. The product of the cuproptosis-associated gene LOXL2 is probably involved in myocardial fibrosis in patients with diabetes, which leads to the development of cardiac insufficiency.
Collapse
Affiliation(s)
- Jinhao Chen
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xu Yang
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Weiwen Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Ying Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Run Lin
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Xianzhen Cai
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Baoxin Yan
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Shantou University Medical College, Shantou, Guangdong, China
| | - Bin Xie
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Jilin Li
- Department of Cardiology, Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| |
Collapse
|
3
|
Chen K, Qian J, Xu W, Li TT. Hierarchical Superhydrophilic/Superaerophobic Ni(OH) 2@NiFe-PBA Nanoarray Supported on Nickel Foam for Boosting the Oxygen Evolution Reaction. Inorg Chem 2024; 63:642-652. [PMID: 38131603 DOI: 10.1021/acs.inorgchem.3c03542] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The design of hierarchical electrocatalysts with plentiful active sites and high mass transfer efficiency is critical to efficiently and sustainably carrying out the oxygen evolution reaction (OER), which presents a challenging and pressing need. In this study, a hierarchical Ni(OH)2@NiFe-Prussian blue analogue nanoarray grown on nickel foam (NF) [labeled as Ni(OH)2@NiFe-PBA/NF] was synthesized by combining a mild electrodeposition method with an ion-exchange strategy. The resultant Ni(OH)2@NiFe-PBA/NF displays superhydrophilic/superaerophobic properties that optimize the contact with the electrolyte, improve mass transfer efficiency, and expedite detachment of O2 bubbles during the electrocatalytic OER. Specifically, Ni(OH)2@NiFe-PBA/NF exhibits exceptional capability in the OER with low overpotentials of 224 and 240 mV at the current densities of 50 and 100 mA cm-2, respectively, accompanied by a low Tafel slope of 37.1 mV dec-1 and outstanding stability over 100 h at a fixed potential of 1.78 V vs reversible hydrogen electrode (RHE). Furthermore, Ni(OH)2@NiFe-PBA/NF demonstrates remarkable OER performance even in alkaline simulated seawater. During the OER process, active metal-OOH intermediates were formed by the partial self-reconstruction of NiFe-PBA in the heterostructure, as revealed by in situ Raman spectroscopy.
Collapse
Affiliation(s)
- Kai Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
| | - Wei Xu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| | - Ting-Ting Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China
| |
Collapse
|